
7_ _ 7- ===

I PHOTOGRAPH THIS SHEET

LEVE NiaIchi. c INVENTORY
z M mt~ey .CA

DOCUMENT IDENTIFICATION

DISTRIBUTION STAE.sTF-i' I

Approved for public ec
Distribution Unhmjtewd

DISTRIBUTION STATEMENT

ACCESSION FOR A
NTIS GRA&I

DTIC TAB

UNANNOUNCED ElDTIC SAUG 18 1980

BYD
DISTRIBUTION
AVAILABILITY CODES
DISr AVAIL AND/OR SPECIAL DATE ACCESSIONED

71Sl"I "1 - . -'rrryp

SIGNTIFICLMNT !Y2.27- OF p.=-;- Kl"Hii DO NOT I

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FOlR~m DOCUMENT PROCESSING SHEET
OTIC OCT 79 70A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
The Design of a Secure File Storaqe System

by

Edward James Parks

December 1979

Thesis Advisor: L.A. Cox

Approved for public release; distribution unlimited

042 -

i-

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT [

REPRODUCE LEGIBLY.
11

I

SECUITYCLASIFCATOR OF THIS PAGE fW'A.n Data Efntered)

REPORT DOCUMENTATION PAGE BFRE COMPTING ORM

7REP-Oft liumat ~2. GGVT ACCESSION '40. 3. RECIMiENT'S CATALOG N .,MSEf

4TITLE (and Subti) 5 TYPE OF REPORT S, PERIOD COVERED

The Design of a Secure File Storage System Master's Thesis;Dec 7

6. *&RFORMING ORG. RIEPOMT NUMBER

7. AuTHOR(s) S. CONTRACT OR GRANT NI.MBER(s)

Edward James Parks

9PIERFORMING ORGANIZATION NAME AND ADDRESS 10. PAOGRAM ELEMENT. PROJECI TASr

Naval Postgraduate School AE OEUI UUR

Monterey, California 93940

II CONTROLLING OFFICE NAME AND) ADDRESS 12. REPORT DATE

Naval Postgrcaduate School December 1979
Monterey, California 93940 120UME F AE

14 MONITORING AGENCY N AME A ADONESSfft d~trn froi Contr'olifng Office) 120EUIY LS.(I hs,~n

Naval Postgraduate School IS EUncY lassi(f ied~~ot

Monterey, Califri 9390 5. 0ECLASSIFICATION1OOWNGRADINf,
SCF.9E1U1.1

16 DISTRIBUTION STATEMENT (of this Roper#)

Approved for public release: distribution unlimited

17. DISTRINUTION STATEMENT (of th. nt~ftwd In Blok 20. It different host Report)

1S SUPPLEMENTARV NOTES

19 KEY WORDS (Coninue on t*7*mo* aid* if necessary arid ldiy by block numer)

Data Security, Security Kernel, Operating Systems, File System,

Secure File System, Secure Operating System

20. ASTRACT (Continue on reverse aide if nocooee andE identify by black nFMbe)

Adesign for a secure, multi-user, File Storage System
is developed. This design, incorporating a concurrently

developed Security Kernel, provides a multilevel secure

flegible file storage serving a disti'ibuted system of dissimilar

computers. The Security Kerr.il is responsible for non-discretion-

DDIA7 1471, EDITION OF I NOV Ott IS OBSOLETE N L SjIL.....
(Pae) /NflI2046OISECURITY CLASSIFICATION OF THIS PAGE (Wen Dore Entrd

OJNCLASSIFIED
SOC761TV CLASIVICATiol OV 1is 0 th u61W, ftl. E. ..

ary (e.g.,classification and clearance) security and the File
Storage System Supervisor is responsible for discretionary
(e.g., "need to know") security. Multilevel security is achieved
by the controlled access to consolidated file storage by Host
computer systems. Multiprogramming of surrogate Supervisor
processes operating on behalf of the Host computer systems provides

for system efficiency. A segmented memory at the Supervisor
level allows controlled data sharing among authorized users.
System integrity is independent of the internal security controls
(or lack of them) in the distributed systems; the File Storage
System prevents system-wide security side effects. A loop free
structure along with system simplicity and robustness are design
characteristics.

2'

51 10-01-601SWCUIYW CL £181PICATION OF ?IS PAGV"90 0610 R"We..e

_70ii-

I-b ~ ~ 4 - 2

ApDroved for public release; distribution unlimited.

TEE ITS IGN OF A
SECURE FILE STORAGE SYSTEM

by

Edward James Parks
Lieutenant, United States Navy

PS, United States Naval Academy, 1971

Submitted in partial fulfillment of the
reouirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVL POSTGRADUATE SCHOOL
December 1.979

= Author
-21 -- - - - - - - - -

Approved by-:- 4 ~,i

Thesis Advisor

--- - _ ----_ ------- - -------Second Reader

Chair s De EMnt oputer Science

Dean of Infornat! ad. Policy Sciences -S

3

A AIBSTRACOT

t, leic or a secure. multi-user. Fie Storaae System

is develon~ed. This desi,r incorporating a c.n-currentiv

developed Security Kernel. rro v ides a ultile-vel seC" P

Iflexible file- ctnha_-re erna a distrihutA srctn"-T n4

dissimailar cn-ruters. The Security 'Kernel is resrnnitl0 for

non-dtsc"etio-Ary teg, classificatior a ,dCIear-A '- ne)

se cur ity an4 the FilIe Storaae System e F o 1V3.s0 5

resrporsil' fPr !iscretionary (!a. A +r P=

security. M'ltilevel szcurity is achieved-. by tA connrlled

access to c-rc idated file s to rageY fr ct c-te

systems. 71-ult irngramrning of surr oga te Surev ~ p r oc s se s

oneratir on ocil" o f th ost co.npute'-svt-cr"1C

for system effi.-iicv. A se-gmented memory a t t" n beSUPrvisor

lIevel allows controlled data sharine amoRa- auth-CrizoA users.

System integfrity Is inlepDendent of the intern-, socuIi ty

controls or lark of them) in the d i stribute cvstm the

Fie St nragFe S Y Sto pre ve n ts system-id seuity s~e

ef'fects. 1 lAo free structure along with systema simplicity

= and robustness are desigzn characteris tics.

TABLF Or CQN'PFNTS

I1I IN'?.ODUCTIONMt

C. PROIM DFI NITION. 1I

. Secur it...................................I. Se-,--"

2. Process 1

3. Segmentation 18

4. Du oera -n i

5. Protection Domians .2

D. SYSTEM SRiUhimT S.............................2Z_

S I sIN .. 23

3. sys.M DIeTvRv -4

1.................... 4

2. S ar0til Fle.............................3

S1. Shared& Sz_ ents Intera~tion. .-9
.2- F...nen 97

c. i --- Manacson -rZp

osa . File la .ement om.and Handler Module. G-?

..ire.tory orrn. Module................. -3

c. Discretionarv ntra Modul e• a --

5rv rl •e • 7

d. Sement Hindler Module e

. Memory Handler Module 77

0. ilu /etD t "oSS.... Xf

Tnnut OutDut Command Ha-dle Module -C

C. File H11andler Module............

. acket Hand

-T-

.'S_- . . . a

APPENDIX t--SYSTE i11
tPF- MIX 'F--SU"TvSS AND~ rROR Cm-rc

AP-NI rMAD ~np;v~p...................
II CF -VMI RFF?.4-nC *z

INIIA ?ITUlwTj 12?........

==

r-

P. ?rotectlc Plcains- __

Abstra-t Svstem .e.. . . .

= _ -

Virtual 7 :erarchy -

e i C-= e ct r st u u-- s a IAu ps.

9. Mail -=0r Segment

14. C - "MISn2U --

FM -icr Su ry Cnt ro c. . _e..

13. 0% 0nn~rt .- b -.. I
Handler - ule

.? .eor .a = .'m r

I C Packet c *.'%dul,-y

2es 10 .o .r .efe M .ul .. 91 ..4.....

21. Packet 1- ? ,n .. 1
9~VrTO %*a-mtO lPZ .A~

-n. r.-.-.j.4. - I

''7

4z _q t--nN

Nnor tanks tr- Lc rc * - Cnet_ -eiI

as sistence. -. Ire

I I

nr7 ~---~~carTO

v U=

cirIF 0 - M I

s Is 1

r X --
r-0

-~~~~~ SY!j e~r i

w11 ~ 7f s c~SS

-
is-

- - - -

~n ___ h.--.C thC 4 =-z=Z7=

-4---4r
m

_

is -2

In-a
-A -e a c

0
rv

or -_

data, predicates a "star" network for the system structure

as depicted in figure 1. It must be noted, however, that the

FSS cannot control the physical security of the Host systems

and that TIost systems have the ability to circ1imvent FSS

security by direct inter-Host communication links. To 4

preserve data security, all accesses to the FSS consolidated

data must go througTh the FSS for access validation.

Data sharine among authorized asers is accom!lished by a

segmented environment which allows controlled direct access

to all on-line data. The Security Kernel (or simply Kernel)

is used to irsure that nor-discretionary date access is

perfcrmed in an absolutely controlled (i.e., secure) manner.

{See [Coleman] for detailed information on the Security

Kernel.)

A. PROBLEM DEFINITION

'It is illogical to ignore the fact that computers may
dissemirate information to anyone who knows how to ask for
it, completely bypassing the expensive controls placed on
paper circulation." [Schell(l)]

That this fact is ignored is deonstrated by the

estimated 1%0 million dollars lost yearly by non-secure

computer systems in the United States [Denning(2)i. It is

obvious that a primary problem/limitation of computer

systems in use today is the lack of data security. As

reouirements to store and access data by computer increase,

the seriousness of this problem/limitation cannot be

ignored.

A system that can simultaneously provide data at

7 =

ISecret Unclassif~ied Confl'lential

.0s t -1 o st -2 Host -3

Supervisor]

~ecu~tyKernel1

Discj

-ipjre 1. Smster. Confirurationi

i77

different sensitivity (viz., "classification") levels for

users with different access authorizations (viz.,

clearances") without a security violation is said to be a

multilevel secure system. Because it is sually not

desirable to authorize all system users access to the

highest level of lata ''system high") or provide separate

[without sharing) systems f-r each level of data, a

multilevel systemr is highly desirable. 1 multilevel system

also allows the raxi-um amount of controlled data sharing

among a,,thorized users, a primary qoal of any data storage

system.

Previous research shows that a viable approach to the

auestion of internal computer security exists. This

approach, sometimes termed the "security kernel approach"

[Schell(2)], was introduced by Schell in 1972. it gathers

into one module all eIemer ts that effect the system

security. The module, by being restricted in size, can be

verified cerrect which in turn allows the total system to be

certifed secure.

The FSS software is composed of the Supervisor and the

Kernel. It will provide a multilevel secure consolidated

file storage for distributed Host computer systems. The

non-discretionary security provided by the Kernel and the

discretionary security provided by the Supervisor will

implement a wide range of security policles, includina the

standard Department of Defense (DOD) security policies. Data

sharing is achieved by a seemented memory environment at the I
12;7T~7T~fJ17 ~ - ~ ___

Supervisor level. The Supervisor uses segments {invisible to

the Host systems) to construct the Host files. Multilevel

security is achieved by the management of files submitted by

the Host systems which exist at distinct security levels.

This allows the construction of a multilevel sec-re system

which is depedent on ryone secure element of the

'SS--the Kernel.

3. BACKGROUND

The dramatic reduction in size and cost alona with the

increase in performance nf microprocessors the last

decade has made their use feasible in areas that have

previously beer reserved for mini/maxi computers (or rot

computed at all). Whereas security has been notoriously

lacking in the lareer systems, it has been non-existent ir

microprocessors to date.

Because of their small size, low cost, Jurability., ard, A!

perhaps most importantly. the manpower savings induced (just

to renticn a few of rany adva-ftages), microprocessors have

high arpeal for use in a military environment. However, the

military also has an cbvious nee! for security within their

computer systems, whether they are micro, mini, or maxi

based.

For example, the Navy is presently considerirn systems

for the next generation of non-tactical shipboard computers

[Smith!. They will be mainly uspd for data processing in the

areas of:

13!

Pay and Personnel

Supply and FinanceI ~ maintenance.

Cost. size and speed constraints will soon be met by

=commercially available Drodlucts. Security, however,

continues to be a Droblem- not adeauately addressed in any

available systems. To preserve data confidentiality k(no t

only with rsct to clearance level but also with resnect

to the cu.-rrent stipsulations of the Privacy Act), security is

a necessary part of any hP b,)a rd, pu ut er systen. pay

records. f'or exaMple, should not have the same access levelj

as maintenance records. In order to store record's in a

C 0M-M 0 n data base and t o have controlled sh ar in _ when

aprpriate, the computer must be able to maintaina

multilevel secure enviiroinpt. M

There are several possibl apDroacires toachieve a

secure multilevel environment. The frontal approach, which

i s most difficult. is to certify all distributed comp'Uters

which have access to the data base as secure. second

method and the method adoptel for the F'SS, is to cerfify

only one element of the P55 secure-the Sqcurity Kernel. -111-

access to the '?SS that involves non-discretionary securlt.-

will be validated by the Kerrel. TheP5 therefore

guarantees to manage files in a manner consistant with th~e

- EFSS security policies.

The desian for the rSS is one member of a family of

-= ~SySteMS proposed by O'Coniell and Richardson [O'Connell] -

14

_ _ --=-=~=-

Securi ty, configuration independence. and a loon-freeF

st ructure are characteristics of this family of systems.

C.BASIC 1FFINIMINNS

1. Security

I1thouah any viable secure system includes both

internal and eyternal aspects, relyi-p- excess!-vely on

external controls is not desirable in many case< due to the

added expenses and increased security risks involve! in

-error-prone mrxual -Drocediures. 'Fternal controls als cannot

-provide the securp slarinR of data that is needed in snch

-applications as integrated data bases and computer networks,A

primary characteristics of' the FSS. The use of the Kernel

-concept is a demorstratively effective and practical method

for providina the internal computer security controls that

are necessary for a secure multilevel system,. This concept

is at the center of the FSS design.

W The basic cncort behind this appDroacnh is that a i
small portion of hardware/software, the Kernel, can provide

the internal security controls that are effective agzainst
0

all at tacks , (malicious or accidental) includinz those never -

thought nf by the designer. [This also means that errrs~ J-

-the FSS Supervisor cannot cause unauthorized access to

data.)

System security is the implementation of a security

-policy. This policy is a collection of laws, rules, and

regizlations that establish t*-e- rules for access to tedate

15

in the system. Sucn -Dolicies, such as the one established bym

the DOD. have two distinct aspects: 'iscretio-ary and

nor-discretionary security. Noin-discretionary security

externally cc strain~s what access is possiblL. I-,- DOD

environmrent, the familiar non-discretionary security levels
are: teD secret. secret. confidential, and unclassifiei.H

Since most contemo-orary m~ter systems do not orcvide the

data labelinc rece. _ry to support non--di-rcr-ttnary

security, all data is impli c i tly accesibe 7-th SS,

s e Per.t a t-L c all1o w uni'iue identificatior and labeling of

= data; nor-discretionary secu-rity is therefore supported. The

Kernel is t h element i n the FSS r-s-nt0 Por

enforcinz non-discretionary security.

Non-discretionary security involves the comparin- of

the access class of a specific object folbiect access class,

,oac)) with the access class of' the reanuestor (subject

access class, ~sc) to insure compatibility. In a r- 3

ervirornment, fer exa-ple, a persor (subject) with sac of'

secret has access to files (objects) at any access class A

equal to or less tha- secret. The relaticnshis between

different access classes are represented by a -artially 4
ordered lattice structure ['Dennira,(1)I . Th is lattice

represents thr. a utho r Iz e. access based on the re=lationships

of two levels. A" exam~ple of' the not-relate'. uak ir th-

lattice partially ordered' relationship, occurs -because of

DOD compartrrentalM7ation (e.g., secret is not related to

secret.ntclear). Thle followinz accesses are permitted for

-tht r-lationships represented. by this lattice structure. I
c- oac tread/write access

r sac > oac :read access (read down

sac 6 oac :write access (write ur)

sac -> oac :no access (sac not related to oac)

In each case, the Kernel must know the I

identification of the Host system if it is to perfe-m
correct non-discretionary security checks. Unique system

identification is provided by the system port nuwber, which

is hardwired, and known to the Kernel.

Discretionary security provides a refinerent to the

ion-discretionary security policy and is reflected it the

DOD "need to know policy. Computer systems which have

Access Control Lists (ACL) associated with data, implenment

this discretionary policy. The FSS Supervisor is responsible a

for the System discretionary security and although this

aspect of the Syttem security is not validated by the Kernel

(and therefore not certified correct), the validity of the

non-disc tionary security is not affected.

implement its aspect of security, the Supervisor

needs to know the identification of the Host system "user".

This Host system user identification must be passed to the

*SS Supervisor by the Host system. Since an insecure Host

system cannot be trusted to pass the carrect information,

the user identification is only as good as the Host syste

implementation. (i.e., ?SS discretionary security is only as

17

~-R --
6- I--

A

good as the, Host System's Implementation of discretionary

security.) This implementation may be good on some systems,

(e.g. UNIX [Morrisi) but nan-existent on other systems

r (e.g.. CP/M [Digiie2I), It must be remembered that this in i

j no way affects the enforcement of the non-discretionary

security by the Kernel.

2. ProcessI A process can be described as a locus of execution.

The collection of locations that may be accessed during this A

execution Is known as the process' address space [Mani&d. I
A process also has the characteristic that it may be

executed in Parallel with other rrocesses, enhancing system

efficiency ar4 allowing the separation of tasks into

different processes for design clarity.

The ESS has two processes per Host system. These are

an itput/outiut (10) process for SuDervisor to Host data

transfer and communication and a file nanagerent (-M)

process that controls ard maintains the Supervisor

structure. Internrocess comrmunication is achieved by the use

I of eventcounts, sequencers, and synchronization primitives

irtprral to the Kernel (described later).

3. Seamentation

Segmentation allows for the direct addressing of all

system on-line information and the apblication of access

control to this infcration. Note that direct addressing

18

__ __ 2 ~ _C

does not mean random access to the on-line information. On

the contrary, access to segments is controlled by -Dzoiit

memory management calls to the Kernel to swap i n/out a 1
segment. A segment can be defIned as a logical -rouping of I
information such as A suorottine, procedure, data area, or

file. Each urocesses' address sDace consists of a collection

of se#oents. in a segmented environmen-, all address space

references re ouire two components, a segment specifier and

An offset within that segment. Seamentation is used to

provide the Suvervisor doman ^f each process a virtual

memory of imited size. Segments, as mentioned oarinr. are

used by the Supervisor to costruct the Host files which

tetain the attr-Iutes,- of seoments (i.e., access c-ntrnll 3
Multip-ro:ra mm siz

Sm-iltivrogramwmed environment is one in which more

tha one process is in a state of execution at the same I
tire. These rocesses share processor time, memory. and

other resources amone the active processes. In the design

for the TSS, the Supervisor processes are multinaro rar, e ± In

an asynhcronous manner for system efficiency. A

multinrograjMine environment allows the Host systeris to

operate in a 'log~cally parallel manr-r which, adds- to Sy1stem 4

5. Protection Domains

*-One of the key elements necessary zor valid Kernel

- - - _- la -m

r mpleme o tmnation is -the iselatio ofth .ernel from all

possible outside 4 nfluebces. 711_ can b " a done tro ue t0 _U

F- -use pf orotection domains.
tProtection domalns are used to __ range process 7

address snace s into "ringRs- jah0dej o Aitrt

Iprivileae. This arrangement is a hie ra ron c ac struct- with

themot pivleged domnainr being the inner mLst A-ne. ?irlure

Prctection bi-smyIae d

=IAt ri1 re~ -v either her-dar

ctar.Hardgare i~s more nj4- bt c nt

COM.esrci a 11iy evaiii±ble in d~cor-c evice- LodICV TwoI

ett devices are avaialable. howew-r a vipar.~gI

r-h0 t~wo states as serarate rings AMi~ r i'~ fo software

rn 'ossinr- mrhanislms, the pcq~yt - ro~~ti+r

-- r-5-e be created-.

There are no fixed hardware ntiennt n h

impmlemnentation of the 735. Sys-tem efficiency does. however. -

depenkl oil an a-wroriate cbei-e o-' 'ar-Aware. TwVo Ias' c-

hardware fe atures that are felt to be necessary Fora. al

i-flemrnn tat ionz of the r53 are seeietati~o. an 'i 1-n

domains.

S>egmentaticn is necessary VAracescrnr ad4ata

sh6a-rn. A multiple state f!to in tJh i s Ca s I jsSSA-y

for the i-solation of the Wermo f-C- -h- - 4 !and;

uncerttfied) Software.
A

*St

Outer !vtern4dachire

Inner ~~d a~:
Sec-uri ty Eer-e.j

Yigur 2.areictne Dus-

n a-a- s a± lt e/umt it U

narovides a se ~ ~ 1 = ine eni= a U Sa vsnr

pere~ es n' j~

enrro" zn fo 1 at owe ys ~s

IM

IT.

haware or Znc Mljco eIrtIonan I

9:_- los C7C s One AannM n r-

n= W- -nne- at,9 -- .,--=--

a~aIS --teratc~ an-a iutiel ao~ ' s~~

canj~et at tK 41y r

ze -"se~ ,a -sess cois& of a se K nee 7e

=t~-o s c-"bre. it ims 'ulter erre efiint, e

_pecm 4.1 V bn P 4-atj jr a fea..tue CCC7E75

-i..&wPr re - v-tw nopA Sn c gp

Virtin o cta M. o Nutle 2.ain1 =ve srVi

mrrno- enaaial n cerocessor meorfinrro J
domai PSC dcirpeors onily tvo 'tar!1Dc far thleK

ani t-e fOR the 3-arvit so rzrc~sy r1 1-zi

aSs niate&l ?eoy 'zana-mert Unit (,vJ) rZlrt). n

rS~i i~ a W b-it two-dornair ;;ac'h"e tiuch "ca2bt

23

loical address. The Z8-10 M.MU maps the 23 bit logical

address into a 24 bit absolute address and allows the

-capabi-lity of addressing up to 128 segments (with two MMU's)

-of 64K bytes each (8M-bytes total) in a two-dimensional

memory space. (See [Coleman] for further details.) RS-232

bus compatibility is assumed for serial da'ta input/output at

the hardware level. This allows byte synchronization and

byte parity checks to be performed at the hardware level by

the FSS universal asynchronous receiver-transmitter (UART).

3. SYSTEM STIUCTU]{E

1. System Levels

Abstraction is a way of avoidink complexity and a

_ mental tool for approaching complex problems [Dijkstra(2)].

The use of abstaction allows the presentation of a system

AI design that is concise, precise, and easy to understand,

1 There are four levels of abstraction for the FSS as

-A presented in figure 3.

Level 0 is the hardware level and consists of the

Z8001 microprocessor memory and some form of disc storage

J (initial implementation may be with floppy disc).

Level 1, the Kernel, is isolated and protected from

manipulation (accidential or malicious) by being placed in

the more privileged domain of the Z801. Only the Kernel has

access to system" machine instructions and controls all

access to the system hardware elements (memory, disc). The

Kernel -rovides a sermented environment in which the

24

EE -S-cr et UO n-f-Ho6s-t 1Host -2

Host S ystems V----- -- - - -- - - -

SupervisorI I IC 10--

Superv~sor (1a te Ga te

Security Kernel XKbeperf keeber

Security Kerhel

Data Warehouse"

data
- - -conztrol (i.e., commvnication)

Figure 3. Abstract System View

Supervisor Operates.

Level 2, the Supervisor, operates in the outer (less

privile&ee) domain of the Z8001& It has access to "normal"

machine instructions, but must go through the software

Gatekeeper [Coleman] of the Kernel to get access to memory

(,viz., segments) and disc storage. The Supervisor provides a

virtual file hierarchy to each Host system for file- storage.

In order to manage the file hierarchy, surrogate processes

(1input/output (10) and file management (FM)) are assigned to

each Host system. These processes act on the reouests

submitted by the Host computer systems. All processes -are

created at system generation time and, are not created-or

deleted in a dynamic manner. I
Level 3 consists of the Host Computer systems. These

systems are hardwired to the Z8ee in the FSS design. Each -

port has a fixed access level so that if a multilevel secure

Host desires to handle data at two levels, it must have two j
connections to the EFSS. (Note that if the Host is not a true

secure multilevel Host, and does have multiple connections

witl distinct levels, then the FSS security constraints are

circumvented.)

2. System Protocol

Protocols are formal specifications which constrain

data exchange between systems and the MSS. These

specifications allow the FSS to achieve bounded-, deadlock

free and fault tolerant communication. To organize and

26

- ~ ---- ---- ---

r.Eiu-~.~ S (* -C cfq- 9l

implify protocol design in -the FSS, protocol is logically

divied- into a hierarchical structure of two interactin-

layers. Level I- protocol handles packet (described later)

3synchr6n!iatior. error detection, and command type

4e,.terminetion'. Level 2 handles the repetitive activity of

data transfer,.

Data and commands are transmitted between FSS and

Host via fixed size packets.- Packet synchronization is

necessary for Host-YSS communicat ion Error

detectior/correction is closely related to the -problem .of

-packet synchronization; packets not in synchronization will

not be correct, The -converse is, -not true, however. A

synchronized packet may contain transmission errors. There

are- several ,e-thods -for error detection/correction

[Hamming]. A design choice of a simple check sum par packet

(to detect paciet errors) was made in the interest of System

simplidity. If an error is detec-ted in a packet. the Host
will be requested to ston packet transmission and to begin

again with the packet in which the error was detected. Of

course, the FSS must be able to provide the same service.

This retransmission upon error detection strategy, combined

with the byte parity checks performed at the hardware level

by the UART, will provide the error detection/correction

scheme in the initial FSS design.

3. Host Environment -A

The job of the FSS is to provide a service, viz., to

E V-

store files- in a secure 'data warehouse'. The riles are I
submitted by various Host computer 7'stems. The virtual

environment provided the Host systems is therefore a primary

-design consideration of the ovetall FSS design. Design goals

d-re to make this Host environment simple, easy to use and

understand, efficient and robust.

The center of the Host environment is the

hierarchical file structure maintained by the Supervisor of -

the FSS. This file structure is a tree organization which

facilitates design abstraction (virtual file systems per

Host) as well as file system searches via tree traversal.

Figure 4 illustrars the overall logical structure of the

-Sgpervisor file system.

A f!le can be defined, in the case of the FSS, as

one or more Supervisor segments grouped together+ for the

purpose of Access control (security), retrieval (read), and

modification (write) [Shawl. In the SS the file Is the

basic unit of storage at the Host system level.

The hierarchical file system contains two types of

files? 1) data files, and 2) directory files. Both file

types are constructed from segments (invisible to the Host

systems) at the Supervisor level. The characteristirs

usually associated with a segmented environment (Supervisor

level) such as data sharing and access control, are

transferred to the file environment (Host level) by the FSS.

The Host system, environment consists of a virtual

file hierarchy maintained for each Host system (i.e., ore

28 5t

Ai

ROOT

Altos- Attri1bute s

ut U -2J1 -Attributes

-User_2 jAttribt s er
G roup,- Ir 0 UD

Fiur I*GnrlSprio vl irrh xml

S 29

Virtual file system per hardware port). A primary reason for

havihg multiple virtual file hierarchies is to avoid the

problem of naming conficts which would eventually occur in
MT44

the Supervisor hierarchy as the system grew if per-host

virtual file systems did not exist. Multiple directories

also allow the Host systems to group related files into one

directory, simplifying search and Host use. The Supervisor j
will control the duplication problem within a virtual file

system by not aliowing duplicate file names in a single

directory file. Pathnames are required to uniquely identify

files in the Superviso'r f'ile systems and must be included in

the Host request.

Access to the Supervisor file hierarchy is

controlled in both a discretionary and non-discretionary

manner. The ron-rliscrettonary access is controlled by the

Kernel which will prevent a Host system from reading up or

writing down (confinement property). Discretionary access to

the files is handled by the Supervisor which compares the

Host.user (Host user combination) wth the file ACL.

Requested access is permitted only if the Host.user is

explicitly permitted access by the file ACL.

Fach Wost system virtual file hierarchy is

constructed from data files and directory files which, as

mentioned above, are constructed of Supervisor segments.

Although dynamic Rrowth and shrinkae are usual segment

attributes, a design choice for System simplification was

made to fix segment size at three increments. SMALL (512

30

4= - -___---

bytes). MEDIUM (2! bytes)i and LARGE (SK bytes). These sizes

I were chosen as a compromise between expected file sizes,

Supiervisor buffet renuirements, And minimizing the number of

software ring crossings that would be required during a data

file "read" or "store operation. Because segment size is
limited and there exists the likelihood of encountering I
files larger than the maximum segment size. the concert of a

multiple segment file (msf) is known to the Supervisor.

Figure 5 denicts the general tree structure of a

Supervisor virtual file hierarchy. Directory tiles are

represented by souares and data files by circles. Data

fls, ais their nam"e im plies, contain data only. Directory

files are constructed of a header and zero or more

"'entries There are two types of entries, branch entries

and link entries.

Branch entries contain the attributes of the file

which they identify. In figure 5. for example, the

-attributes of directory file User 1 entry name, ACL, size,

type, -etc.) are contained In directory file Host_1. branch

entry User-1. One branch entry desia-tes one Suervisor

segrien t

A link entry, rerresented by the dotted line in

fig ure 5. Is composed of an entry name" (link name) and a

pathname 1. vathname is the concatenation of entry names

starting fror the root directory and proceeding in

seouential order to the seclified file.) Like a branch

centry, a li rk emt ry is used to access a specific file. For

31

IJ

S

e

se -i~t Dil I

vilej File_1 Dir_1

?izre . Vrtal 'le 'aierarchy 'l~clview'

3X2

- eXarple. in i-ure the wthname contained in tie li-

entry is Rst iUser.3>Dir,1. Unlike a branch entry,

-howevet. t e link entry does not contain any file

attributes. Access is controlled as tne Supervisor traverses

the snecified math to the reQuested file.

The use of link entries allows sharing of files

among f systems atd amrong.. Host system users. Loops which

miaht be generated by two links which reference each others

are prcvantet by the Supervisor. (-oo cudretaree

traversal uroblem to the Supervisor.)

Each file has a file name (Entry Name--unioue rer

directory file) given by the Host system at file creation

time. This file name and its nathname are used to unicuely I
locate tne file in the Host% virtual file system. By

traversing the virtual hierarchy, the Sunervisor can locate

the renuested file if it exists in the system. In either

case !viz., whether the file exists or not), appropratea

action can be taken by the Supervisor.

a. Directory File

Figure 6 is a logical representvtion of a file

directory. Each directory file is made up of a header and7

zero or more fixed size branch/link entries. A fired

directory size of LARGE (SK bytes) was chosen to insure a

reasnaelble amount of directory sDace for Host system use. EN

This could pose a space probiem, especially for secoadary

- storage. (Adequate main memory can be installed for rt.quired

___ _ -- _______

flioctowy zM

(Reader)
*r-tL Count- byte
fnt-y-Cour-t-I byte

nr-anch ~ty
-ntry_ Mane-IS bytes

ACL, ?tr-2 bytes-
rnSize-4 'byte s

-ataDirSwv!ch-1 byte
±-eCreat&d-'i bytes

last -Update---16 bytes
AccesClas-I byt

i-ink-1E bbyte

LinkCreatedA16 byte S

w_ _ _ __ _ _

El &ure 6. Lorvical ietr tutr

aw34

buffe space.) 171e Kernel, which stores segetsapgs

may want to co-pact se _en' V~ not staring on seconar

storage vaRes which Cont a in all zercs . Tis wouia greatly

reduce gl ao-int of wasted space on secondarV trg

(Another equally viable souit u c slectedfrtij

desieni is to have miultivlo- s-_ directori-2 Iran-

Su le rnisor sz:4ilar to Multiple segmrnt dt ie. h

diretor fil beder ontinSthe follovina inforrm-atio~

tnrrCunt: This is V~ i~mr of brarichfIink

entries in the directory.

AOLT font This i s a cun Mr f th-e mibrof

AOLXNh!elements .e-xft ina WO -o ~' ~r~

if the entry is a brech env itwijctaf

the foUl-w l~ C'A CrP

IntyName: TFntr; Vnatie s the file name. Th

fl 0 t cyctc'=C a'e rotnorsibiC For sapnlntg C nates but

as mentione- abo-ve, will be Pr-ventw ai S h u-Zirisor from

1hfl'ru d-piae ae file "ates) in ore -directory file.

AccessClass: This Plerre' :ontai s te 111 e

access I-vel.

Branch 1Lirk Switct- This element will ia__utifY

the entry asabanch -*rY wih4 c' in ttrt specifieste

entry fmrat.

A C Ptr This elmn wl oit to n ALf

the branc-h entry. The F.S5 has only three dtst Inct

dlscretiffrIary acc-ess modes: 11 woil" access as " ar=e

implies. 4oclares that no access is to be allhr4 to Vh

35-

sucifn V- ostsr cmbination reaL access allow-saI

~~~-:t~:zr :se~ aad a ___1 only''_

access). 43) vwrite acciess e-lcws a BEost-er write access5

be a list .-f authori 7sA users Pn the forwe nost-user w i t

associated access ~oe. A 4don t care' author zatlo E1
t--iscrase a ~'will alnov cg--a' access in tha Patc-cry

Vnr a~m~l* *se wn' a'l~ secife-d user

aces Hoss~t~ av ~-~t= t ctc wtha

s~cf 4  'es his 22-C for cnt-y user ca", ea-sliy

be exr~c tc ie ~ h a'e caterrie such asIm 1 ~

exzaded a jr-jumda, tuai E1 viz1, i allw the

f ur n'Ezr reine the -d ±1 cr ona rv arcrn ess ailewe1 t-oa=f-4

File 5jzt !Mis i In. a40nis m-Cessa"r

-uroper" maimagerent 01 t- Cos zR rt a mi 5Y~ Zlr

=r r:d s by tv S-F Sup rvi sor

-~c t racuiato the nurtor seRie-nt' that ta Una~zt~e:

sezet il. t will 1 e tflpiP -y the Hc-st system n n

1zz ?IJS Vcwn enuest tjm bhtv)

'-'o& h+p -- Srit t-' c4#h telch

Suewsr 4,~t~ f'~ V yIM ih te tranc Z

tdata. i irac taor y YIft i s4secescsaty. t-e tothe di~ffeiont

file formats.__I

File %10r-t. rhis oll-ontt is uc-dtong-me-r

audit r rroc-s. 4.e., to have a bermanent em_ -o-7 thMie

crea-torp and ma~ -_ eaWo,4

Last ?y~atee This eemat v1 1 ' VV tJ Thst -
Host ard user. sto .re io the file. --is A'HtO rtj:



~41". be of' the form~ HEost.,,~-..nrAa.=te tjp This vt--- a--ow the

FSS to have a 'imite4l ardit eaability. The ofi

ro-pertv Drverts t +he Fs S*rS10G a~s 1c- een-phn tr ckM Xr

accesses since nrocesses at n~Aer levels Cam r4- at 'ow 0

lcvpls but carot rim*h anait- jvhfo rat- .cn rr

that the ,mact Und4ate ir fcrm a -0tio for r:nggre 4 d _-Ir:=rtorIP-

nay o be ar-u-tQf *hcaoasn

B;four Oeeers. Thzse are: 1 -n try va v t~ Alt? the-

file -rAflch link Switcbt idacr_ 1 v thenm pI- type.3

Cate Time, the LiM- of link initiation- ZV vi v t3Dc

A11-0 a s, the Su rvirv traverses the * -

t 198 bytes- This places soerestrictions on th aE-ost im

that 'c-g Ojl- na-ws vill Son' crntno e lta yt avail*afl

for a r-athra'e.. F-oweve.tisrctclocabeoer 0 v

pathnames which cc-ntain several link enris 'vic ch ar

tbepselves ie IM? bytes. witn :N -- at-Ii-nratie r

directory, tere are an avaragr Z~ 2 Af e#-Vr i'M97t~

each) availal to each brara entry. 'Refteber l en ertres _

d =o zot have APUt entries.! P is- con-taini t- Initjal

A field s-izes for the directry COS Ctm 7v-0 prieary

__factor in ralculatin, the r o- n' a-va 4n ps- enries is the

Sire of thP link ;atbnaee tis - irr -a se s :=Se sizeoflk

entries to 16'3 bytes end altho-nsncae is wact4 z branch

37



entries, the slnlification of System desian resulting from

a fixed size of branch/link entry is felt to be sufficient

justification in the initial design.

t. Data Tiles

Data files are always "leaf" nodes in the file

hierarchy and contain only data.

r. Multiple Segment File Directory

A msf directory is a Supervisor constructA

'invisible to FHost systems) to manage ftiles laraer than the

maximum fixed segment size. Because the number of segments

that will be required by the Supervisor to store a file can

be calculated from the file size information oassed -by t~ie

Host. a msf directory need only be a segment of size zerc.

This rma1tes the Kernel alias table (which is a f Ixed

Size--see (Coleman!) the limiting factor in the maximum file

size. The alias table has the same number of entries as a

Supervisor directory (viz., 32) which limits maximum Host

file size to 256K~ bytes. Files that exceed the maximum file

size must be split by the Host system. An attempt to store a4

file that is too large will result is an error condition

resDonse to the Host and an unexecuted cotrmand.

4. Host System Commands

The Host commands provide the only interface that aI

_-A Host system has with the FSS. Each command is interpreted by

324

~ __ ___em

_____ ________ ~-R
_____: -ZI ---- ~ _____



the FSS a°d acte upon by surrogate Supervisor processes

the Fost system has no direct access to the FSS. There is

one acknowledgemeht between the Host and FSS at this level.

This is a "command complete" acknowledgement that informs

the Host system that the Supervisor has completed action on

its request. if an error condition occurs, the appropriate - U

error code is returned in the acknowledgement.

Anothe-r aspect of the Host environment needs to be 1
defined aisc. The Host environment can be divided into two

states; they are the "old" state, before the FSS has acted J

upon the Host request, and the "new" state, which occurs

after action has been completed by the FSS. The specific

state of the FSS at any instant is indeterminate at the Host

level if more than one Fost is accessing the same file of

the FSS at one time. That is, since Supervisor processes

execute in a completely asynchronous manner, the FSS state

may change after a Host command is sent but before the FSS

acts on the command. This will not affect the performance of

the System or validity of its security; Host commands will

be executed as a single, atomic operation in the FSS state

in which they are received and interpreted. The Host will

get some "correct" response for some state existing between

the sending of the 'Rost command and the FSS acknowledgement

on the same command. This allows several Hosts to safely

synchronize their actions external to the FSS.

The following is considered to be a minimal subset

of commands available to the Host System for adeouate file

39



UA

control. Figure 7 illustrates the required discretionary

access attributes. The files are referenced in the Host

command descriptions starting from the root of the Host
Ivirtual file system. Th e pathnarme specifies the parent

directory file (containing access attributes of the file), I

and the file (data or directory) to which the Host command

refers. All coimands require a pathname for unique file

identification. Fach command also reauires the snecification

of the Host system "user" in order for the Supervisor to

perform discretionary security checks. This 'userid" will be I
supplied by the Host systen or the Host system user, which

ever is appropriate. Ij

CREATE_FIL <pathname, accessclass, file type 1
(directory, data)). This command requests that the

Supervisor create a branch entry in the specified directory

under the specified file name at the specified access class.

An initial access mode of write will be given to file 4

creator and may be altered by the use of the ADD ACL ENTRY

and DELETE_ACLENTRY commands. This is the only Host command I
where file access class is specified. It is used in this

command to create upgraded directory files, if desired. I
(Data files may not be uvgraded--described later.) In the

initial implementation (with single level Hosts), there will

be no upgraded directories within a Host virtual file ij

system. Initial data file size is zero; initial directory

file size is LARGE (2K bytes). Actions taken:

1) The Supervisor locates the root of the virtual

: t - _ - _ _ -- -. . - -- = - . .. _ - _ -



M

DirA

__IDiscretionary

tAccess

3i Attributes

Dir 3

ilreti onar

Access

rFilel1 AttributesI1 r

Filel 1

Figvure 7. File Discretionary Access Control

41

= -=- -=- --- 4



file system for this Host and does a tree traversal to

locate the parent directory file.

2) If the parent directory file is not found or

found but write access to the parent directory file is not

allowed, an appropriate error code is returned ("file not

found or "write not permitted*).

3) If the directory file is found, and room exists I
in the directory, the new file is entered in a branch. As

mentioned above, no duplicate file names will be allowed by

the Supervisor.

CREATELINK <pathname, link ,userid>. This command

reauests that the Supervisor create a link in the specified

directory under the specified file name. As already

mentioned, the Supervisor will not allow links to form

loops. This is done by restrzcting the maxim~um number of

files in one pathname to 64 files. (This figure is reached

by allowing a maximum pathlength of 128 bytes and having 4
file names of one character. File name delimitors of one

character, viz. ">", will give a maximum pathlength of 64

files.) By keepin track of the path traversed, the

Sunervisor is able to determine if and when a loop is

formed. Actions taken:

1) The Supervisor locates the root of the virtual

file system for this Host and does a tree traversal to

locate the parent directory file.

2) If the parent directory file is not found or

found but write access to the parent directory file is not

42



allowed, an appropriate error code is returned.

W 3) If the parent directory file is found and room

exists in the directory the link is entered in a link I
entry.

DELETE-FILE <Dathname .userid>. This command

reauests that the Supervisor delete the specified file from

the virtual file hierarchy. For design simplicity, only

terminal files (including T'f's), can be deleted. This means

that directories must be empty in order t3 be deleted.

Actions take-: I
1) The Supervisor locates the root of the virtual

file system for this Host and does a tree traversal to S

locate the parent directory file. i

2) If parent directory file is not fo-nd or found

but write access to the parent directory file is not

permitted, an appropriate error code is returned.

3) Otherwise, if the file is located, it is deleted

by the Supervisor.

READ FILE (pathname, command type(directory, data,

size) ,userid). This command requests that the Supervisor

transmit to the Host either a data file, directory file

(selected elements only!, or the File Size, LastUpdate. and

Access Class tentry data) elements associated with a

particular file. An explanation of the last parameter, to

transmit entry data only, needs some explaination.

Branch entry elentents can be logically divided into

43

aim__- -



two categories with respect to discretionary security. The

first category, which includes EntryName,

Branch Link-Switch , Accest_Class, and ACLPtr are branch

entry attributes which cannot be altered bY a host process =1
unless the process has discretionary write access to the

directory which contains the file branch entry.

The second category, which contains File Size and

Last_Update, are attributes which 'beiong to the file and

must be updated when the file is updated. A situation may I
exist where a process may not have any discretionary access I

to a directory but may have discretionary read access to a

file in the directory (plus implicit access to the rest of1

the directory during the "search"). In order to read this

file, the Host system will need to know file size in order -

to prepare to receive it. This is the situation where the i

READ FILE (size) command is needed. Actions taken: (for data

file) -j
1) The Supervisor cates the root of the virtual

file system for this Host and does a tree traversal to

locate the desired directory file.

2) If the file is not found or found but read access

to the file is not allowed, an appropriate error message is _

returned.

3) Otherwise, the file is transmitted to the

recuesting Host System.

(for directory file) M

1) Same.

44



[ ~~~~2) Same. i on n edacs

3) If the directory file is found and read access

allowed, selected elements of the branch/link entrlas are
Ureturned to the Hast.

'for file size)

1) The Supervisor locates the root of the virtual
file system for this Eost *;.d does a tree traversal to

locate the desired file. A

2) If the file is not found or found but read a-,-cess

to the file is not permitted, an appropriate error code is

returned.

3) Otherwise, the File Size and Last_Update elements

are returned to the Host.

STOR TILE <pathname, file size ,userid>. This

command recuests that the supervisor store the specified

file in the FSS. Actions taken:

1) Te Supervisor locates the root of the virtual

file system for this Host and does a tree traversal to

locate the data file.

2) if the data file is not found or found but write

access to the data file not allowed, an approDriate error=F

code is returned. Note that Host systems can store only data

files; directories are "built" by the Supervisor.

3_ 3) Otherwise, a store operation is performed by the ]
": FSS.

READACL <athname ,userid>. This ormand is used by

45



the Lost systems in conjunction with the ADD ACLENTRY and

DrLET! Z N1NlY to adjust (give/rescind) the access mode

(read/write) allowed to a HostrHost user to a specific file.

Actions taken:

1) The Supervisor locates the the root of the

virtual file system for this Host and does a tree traversal

to locate the parent directory file.

21 If the file is not found or is found but read

access is net allowed to the parent directory file, an

appropriate error code is returned.

3) Otherwise, the supervisor returns the file ACL

for yost system user examination.

ADD ACL ENTRY <pathname. ACL Entry ,userid>. This

command requests the Supervisor to add to the specified file

ACL the specifie4 AOL Entry (Host.user combination plus

associated access mode). Os with the previous commands, the

access is checked for correctness by both the Supervisor and

the Kernel before any action is taken.

DELETE_AOLENTRY <pathname, ACL -Entry .userid>. This

command reauests that an ACL Entry be deleted from a file

ACL. Again. appropriate discretionary and non-discretionary

checks are made before any action is taken by the FSS.

A!ORT. This command requests the Supervisor to quit

execution of the present command and return the file system

to its original state. There are only certain locations i.a

the erecutio. of Host commands that the Supervisor is able

A46

- FEN



to interpt. if an ABORT command is received after an

operation has been completed but before the final Host

acknowledAeement is sent, the original command comletion

will be acknowledged and the abort command will he l-nored.

Otherwise. action of the command will be halted and theI Supervisor will wait for another Host command. All Host

commands (including A3ORT) will be explicitly acknowled~ed

with either a "command complete message or an appropriate J

1$ error code.

C. PROCESS STRUCTURj
n2e1

There are two Supervisor processes which act on behalf

of each Host system (hardware port). The innut/output (iO)

process and the file manawement (FM) process. The 10 rrocess

is responsible for communication and data transfer (via

packets) between the Supervisor and the Rost system. The FI

process is resposible for managinR the per-Hnst virtual

file systems and providing overall FSS control. All Host

eommand5 are interpreted by the FM process; the IO process

acts in a slave" mode to the TM process. Acting together,

the FM and I Drocesses interpret and execute the file

management reauests of the Host systems. Kernel primitives

A FD, AD NCE. AW'IT, and TICKET used in conjunction with

eventcounts and seanencer (described later), are used to

synchronize Host surrowate process execution. 
M

Both the FM and 10 processes call on Kernel primitives

to perform actual manipulation. The normal order in I

to pr! oir sm~ n pi.. noA

47f



which these calls are made is fixed by the Kernel design. To

add a segmernt to a process memorv. the order of Kernel calls
is: 1) Gatekeeper.CreateSegment, 2) Gatekeeper, ake Known,

I and Z) Gatekeeper.Swav_In. To delete a seament fro- a

process memory, the order of Kernel calls is: i)

I Gatekeeper.Swap Out, 2) Gatekeeper.Terminate and 3)

Gatekeeper.Delete Segment. The Supervisor procedures use I
these invokation orders.

There are three levels of abstraction for a Host

surrogate process. They are: 1) the level at which Host

commands are known. 2) the level at which files are known,

F anr 3) the level at which Supervisor segments or packets are -'

knoun. These levels of abstraction should be kept in mind

when readinw the FM and 1O process descriptions.

r. A design choice to sim'vlify file system maintenance and

control is to allow u-PgradinR of only directories (e.g.,

unclassified to secret). This will eliminate the possibility

of havirr a secret file in an unclassified directory. a

situation which would prevent updating of the file branch

data by the secret process since writing "down is not
i allowed . This restriction is not felt to exclude any

sirnificant FSS capabilities and provides for a simplified

i iIm-lementation.

The molular construction of the ESS enhances System

structure. All data bases, except the files themselves, are

module local. Code is exuected to be written in PLZ/SYS

S[Snook]. which is a hieb level nascal-like structured

48

- -~-;=- 72-



o nlanguae.- -ecause of the its length, code is

rncated i Appendix C. The code listed in this appendix

gives the interprocess and intermsdule control 
structure of

K the ?SS.

1. Shared Senent InteractionS

Supervisor D-rocess esecution occurs n a completelY

asynchronous manner3 When a process is refered to in the

follovtre discussions, the two Host surroaate trocesses are

being referenced*; these surrogate processes have the same

:-clearance levels as the Lost they represent.

As already mentioned. the task of the ESS is to

crovide a service. To be of raxim be-etIt, this service

should be unambiruous, easy to use, and rotust.

The maIor proble- that the FSS -ust handle for

proper System security is the confinement protlem. viz.. to I
°Drevent a process fro. readinz a file with a bitR-er

classificatio or writine -i.e., storin or updating) a file

with a lover classification. This is b is ha e d e ntirely by

the Kernel.

Anot- e roble mlosely related tO the confinement

rroble- which also irvoles the Supervisor. is the
readersihrlterse proble' [Cdurtol Ir 'rer to preserve

file interrety, reading and writine of a shared file cannot

be allowed at the same tine. Since a primary ot *.iv of

the $S is to provide for the sharing of files, this Problem

will certainly occur a,4 rust be hain dl I por!Y eor -vste

.-- -m



viability.

I Both the onfinement prcbler a& the readersiwriters

nroblei can be solved in one of two ways. Mutual exclusion,

a rechanism which forces a time ordering on the executin -I

cnitical reeions, forces concurrent processes i-to a total

order execution sequence. This is counterronductive to the

purpose of a -rocess strUcture, which inherent! alovs

concurrent execution of processes.

Aseccrd and relati--ely -new -cttod4 Is +h use of'

eventcounts and seaencer [Peed] to control access to

critical regions. This rethod zreserves the idea of

concurrent processing to a -uch treater extent. A

eventcaunt is a object that keeps coont of the tumler of

events (in the case of the TS, sezrnent tnea2.wrI--e accesses)

that have occured so far in the execution of the Syste-

p-rocedures- These eventco~nts are as'ociat e~i with the

Suervisor seairents. They are accessed only via re' calls

and can be thought of as n-r-4ecreasii- Integer v lues. Each

Supervisor semmnt has two evettcornts ass niatd with it,

one to keep track if the read accesses and one to keep track

of the write accesses.

A Verne! primtive ADVAMCE s- tals the nrcurrene of

an event (read/write seaemnt access) associated wi h a

narticular seement eventcount. The value of an eveutCount is

th number of ADVANCE oterations V a* have been erfor-ed on

it. A process can observe the value of en eventc--ut by

either RlYSegt. rL which retr- t- value directly, or

--- ------- -



by W&T~e~_ *V.t1, which returns when the eventeount

reaches the specific, value t.

A sequencer is also necessary to solve the-

co0-nf inement and readers/writers probls. ~

synchronizaV~on problems require arbitration r e;, w

write accesses to the same segert); everteounts alone do

not have the ability to diseririnate -between two e vents thatA

happen, in an uncontrellel {i-e. concurrent) Jane1

sear-enter. ike eventcounts. Ca n be thozt of as a -

non-decr-Aasinue intIleer v a riable that is initiaii3 zd tech

Sunerv-isor segmITent hac associated with it oneC seouencer.

only operation on a seouelncer Is a Kernel pri-iv9

onWeration tailed ?ICKflSea 5), wich, when apiied to a

secueater, returns a -o--"eeative irenrr TCaue. -S!--ilar- to

-ettirz a ticket and vaitinz to be served at a barter shoD.)

Two uses of TICt~n"-z *,) ill1 return two diffrent values

correstonainz to the relati ve time of call.

The serwnrt number snciated with these

syncbrortzatiofl criftithves in!forms tbe Kernel of whi-'

sege~tis beilr w'fncreP The use -of evertcou tc and4

seorencer Can be illcvstrated by examiir' the fo]llowiza two

urocedures 'read 4> as not egual).. The FSS tuplements these

functions in the 'Netr oto o-e located in the lj

process.



PROCEDURE reader
TF-1IN INTTGrR w; O

abort: w := READ(Seg_#,S); !get reader eventcountl
AWAIT(Se 0,~l !wait until write com~plete!
'read file
if REAfl'SR#,S) <> w THEN GOTO aborttread again!

END

PROCEDURF writer
BEGIN INTEGER t;I

ADVANCE(SeR 0t,S); !increment reader eventcount!
t .KTTTSeg 0,T); !get sequencer!
AWAIT(S eg O.C,t); !wait for write to cormpletel
'read and update file";
ADVANCP(Sea_0,C); lincremant writer eventcount!

EN D

The Kernel will enforce the confinement property and
prevent the application of the ADVANCrE anrIKTpiiie

t o segments with an access class less tUhan the Host access

class. Not to do so, would allow a communication path to be

created between two different access levels. The two F

eventeounts a Supervisor segmert will have associated with

it (in the Kernel) are a write eventcount, C, and a read

eventcourt, S. Each segment will also have a seauencer, T, h
associated with it. Eventcounts and sequencer are initially

zero.

These eventeounts and seouencers, with their]

a ssociated Kernel primitives, are used by the FSS to perform

the synchronization functions of Tlock and Wakeup rcolemani,

described in the original Kernel design. Eventcounts and

seavencers provide a r~earer picture of tie process

interaction as5 well as explicit control of the

readers/writers' problem. Even more importantly, they

52



_permit the synctronization between processes of different

_ access levels. This is essential in order to permit a high

- level Fost to read files of a lower level.

-,here are two Proups of Host reanests. They can bekI_ I

classified as read recuests (e., READ VILE ?kD -AL) and

write requests (e.g., CREATEFILE, STORE FILE). These

categories can be further subdivided into read data file,

read directory file and write data file, write directory

file subcategories. Fach category tyDe must be handled in a

proper manner by the Supervisor to insure file integrity. 4
Each category will be discussed in turn beginning with the 4
read file category.I

There two conditions which might develop over which

a process has no control; file update by another process, i

and file deletion by another process. On example of file

update might occur while a secret process is traversing a

file hierarchy and is in the middle of searching the

directory for ar E-tryName when another process (at the

directory access level) updates the directory. Since the

secret process will READ 'he segment "reader" evetcount, SI

before and after the search, it will know that the data it

had obtained is possibly invalid. Although there does not

appear to be a problem with allowing the 'reading' process

to re-read the directory file until a "ooof read is

achieved, a closer examination of this condition should be

made at implementation time, viz., is it possible for a

4po ai
writing ' process to alter the pathname o f a reading"

53

-4 -07



process so that an inconsistant state is achieved for the

reading process? A possible solution could reouire a process

which suffers a "bal" read to begin the traversal over,

beainning at the root directory.

When a directory is being read to pass directory

data back to a Host, the directory data is Dut in a buffer

and sent from there.

A single segment buffer may be to small to hold a

data file (e.g.. maximum file size of 256K bytes).

Therefore, to present the Host with only valid data, a data
file buffer" is needed at the process level Since this

buffer will be at the process access level, it can be locked

by the process to insure that no other process interfers

iduring the reading operation once the data file is in the

buffer file. This copying of the data file is done by the FM

process and the 10 process will read the file from the

buffer file when transfering the file to a Host system. The

choice of making a copy of a data file is awkward but

considered necessary in order to provide the Host with only

atomic operations, i.e., to prevent the situation from

occuring where half of a ten segment msf is transmitted to 4
the Host and the file is either updated or deleteA.-

The other condition which may arise during a file

read is a file deletion. This situation occurs when one

process is reading a file and another process deletes the

same file. The first process, not knowing that the file

(segment) has been deleted, will try to reference the file

54



7-7

again. A hardware segment fault will occur and cause a

transfer of control to the Kernel. Note that in this

situation, it is the higher access class process which will

suffer the fault while it is reading a lower access class h
file. To handle this problem, viz., the Supervisor segment

fault, a fault handler must be part of the distributed

Supervisor. A Kernel primitive also needs defining. This

primitive. GatekeeDer.On_ Fault (Fault condition, Entry pt),

is called in the initialization of the Supervisor process

wnere it is possible for a segment fault to occur. A call to I

a Superivsor condition establisher is also necessary. This

will Dlace a specific condition handler on a 'condition

stack If a fault occurs, the Kernel returns to the

Supervisor fault handler with a segment fault" error

condition. This fault handler in turn transfers control to

the condition handler at the top of the condition stack'

which can make a normal return from all DroceduJres. When the

error condition is detected (fro;) the return code) by the

appropriate SuDervisor level, action is taken, viz., the

Host command in re-initiated. Sinc the file (segment(s))

has been deleted, this reinvocation nay well result in a

segment not found' error condition beinR returned from the

Kernel and a "file not found" error condition being relayed

tn the Host. When the Supervisor exits fhl "seement fault" a

revert command is necessary to remove the condition

handler from the coriition stack.

Another side benefit of having the Supervisor do all

55



the actual file reading (and therefore take all thle seg-ment

F faults) is that it prevents a hardware fault from occurine

during the actual data transfer in the Kernel durig 0

process execution; this condition would force *tie handlina,-

of the fault in the Kernel domain--a difficult task.

Writingt a file is a more straight foreward task and

presents fewer problems. This is because a writing- process -
has the sam~e access class as the file ard can prevent all

other access to the file 'ksegrmentts)l) it is concerned with.

To alter a directory (CREATE FILE,4 !)FTETEFILE. etc.), a

Drocess will get a ticket to the directory and perform the

necessary tnaripiilation when its number is -:alled. In orlder

to store a file. more care must be taken. if a process were

allowed to store directly Into the old file, the possibility -

exists that a software or hardware error might result in a

partially updated file and loss of file integrity. To

prevent this from occurring, a data file is first stored.

into a temporary file set up by 'h FM process. This also

allows the original file to continue to be read by other

Tprocesses; while the stnre o-.eration is gninR on, aI

significant advantage if the data file is long. kfter theJ

file is stored by the 10 process, the FM process gets a

ticket to the file directory and when its turn comes, maices

the necessary directory 1;pates. viz.. the temnpnrary file

name is subsituted for the Old file Fntry Name, TatUdt

in format ion changed, and the old file deleted. (If the fl

is a msf. each segment is, of course, deleted..)5

= - - - - - -



-77 

-

-
___

2. File Management Process

The FM process is composed of the five modules

depicted is firure 8 (with associated Kernel calls). The FM

process is the controller of the FSS and directs all

interaction between the FSS and a Host system. Each module

which makes up this process will be described alone with the A1

urocedures which make up the indivrIdual m-u , .es.

a. File Management Command Handler Module

As depicted in firure 3. the DI Command Handler I
module see Appendix C . 104) is at the top of the FI '

process hierarchy. This is the level of abstraction at which

Host commands are -known". This module is resDonsitle for I
interprocess communication and synehrorization -(with the 1O

process) and Host command interpretation. interprocess

communication is achieved by the Kernel pr itIves TICKET, 4
ADVANCE and AWAIT which act on an evertc-unt associated with

the shared mail-box seement F .. iRe 9 shows t- e loical

construction ad the data base descriptic- of the vnailbox.

Tizure 1, is a list of the proce-lures contained within the

FMCommand Handler module and their input end output

parameters. I
The FMCmdHnd procedure is the entry procedure

into the FM Command :andler nodule. This i e control

procedure of the module and is responsible for routing Host

commands to specific FM Command _Handier procedures for

action. When notified by the 10 nrocess that a command

-~~~~ - __ _ _ _ -



mail Box FM CommandHandler Initi--.lizatiofl
Modfule

T~ il e tO al

Gatekeeper.
Aleadc
Gatekeeper.

Gatekeeper.

Gtecketpr

.7ateeeee'er.
Make Awawt
Gatekeeeper.

Tisrriionte

S egmery Handler '
-= '1Module

GaGatekeeper.

Gatekeeper. ______

Swmapte~eteefzn

Gatekeepr Gatekeeper.

ewap-v O1t Delete Segm'ent

'Figure v 't Process modules



C ommadBuf fe r

Tnirra tau1f f e r

AC!L Buffer

Msg_Buffer

MailBoxSegment

Mail Boy Record

Commrind Tuffer Array *bytes3
flir Buffer Array Mlax Entryl Dir Data

ALBuffer Array [tax ACL Size] ACL Entry
Msg-Tuffer Record (lnsi byte

Pathrame strinrg
File size IWord
Success code ..,;te]1

Figurce 9. Mail-Box Segme nt

L1



a

A
Mail Bcrr.Ms.InSt-.. eW

DeeeFl srlMai l Box. Msg. Succ.C ode-

EMCmdA Pathname Mail~ o.s.ntCd
Creat File'FileTypeMailB4ox.Msg.SuccCd

Useri dIIF rdPathname Mail BOX.MstR.Inst -
createLink Link Mail _Box.Msg.Su-cc- Code

FMCind_ Pathname Mi o.1sIs

Read File File-Type Mail Bno.isg.SuccCod-e
Userid Mail1 sox g .gFil1eSize

F'CO_ athnanie Mail Fox .mSg.Inst-
StoreFile FileSize Mail-BxigSucCd

Userid MailBcx.Msg.File Size

MCrd_ Pathname MailF-ox.Msg.Inst
read _ACt Userid mail Box.msg.Succ C^ode

Mail!poir.Msg. FilefSize

FMCm-d_ Pathnrare Mail. _Bnr4. Ins+
Add PT.t ACT, ?ntry Mail T-ox.M1sg.Succ Code
'Entry Userid

EM Cud_ Pathname MailBox.Mlsg.Inst
DeleteAOL_ AOL_EZntry Mail *ox.Msg.SuccCd

EntryUserid

Yiieure 10. Co~mmandHandler tiotule

?Dr,%cedure Inpujt/Out put- parame.cters.-



F o
packet is in the mal box, the FM process retrieves the I

command and be. ins anpronriate action. The Host command

ie.g.., STOREFILE, READII E is actually an entry into a

case statement which directs the correct FM Command audler

procedure to tako action. 'ach Host command has associated4

with it, at this level, its own procedure.

ecause the procedures of the nodule =re f
relatively straiht forward, they will nct be discusseA ir

detail. The ge-eral furctions of all the procedures ir this

module are to --s instructions ;o the 10 process ad the

Directnry Cot ro A-m'n the **workhorse- of the FM pcess.4

Soo -explanation of Host command Darameters is

in order, however. These parameters (described below) are: ME

pathrame l

command type-

file size

acce; loval

seri

= ! etry.

Tr all hrst conmands. the pathrame passed by the

yost is the Pa'hae'relative 'to the root" direct oyoO
the Host virtual ile system) of the file of interest.

whether a directory or data file. rarom the nathname, the YM

Iprocess is ab, a t extract the p athbnamne of the Darer'

directory wi-ic- r mst 'brjnw Into the FM process meory to

- m -



check for proper discretionary access. The complete

Dathname, in terms of the FSS file system, - passed to the

Directory Control module for actual directory manipulation.

A Dathname and file size (for the 'buffer file) is returned

tdir-pathrame, dir file size) by the Directory Control

module during a yost P-ADFILE or STORE 'IL! renuest. This

new Dath-ame a-d file size is passed to the TO process where

the actual data transfer takes nlace for these operations.

Since discretionarv security checks are made in the FM

process and all input/output "buffers" (e.g., temporary data

file, mall_boy segment) are under positive FM process

control, the T10 process need not be concerned with

discreticnary security or the possibility of a segment

fault.

A link is a oathname which a Host passes in the

CREtTE LINK command.

?ile tyIe used. for t h F __ILT =Host

com-and e A is necessary becauase of the differert file

formats.

Command type is used in the READ Fil-E Host

command to specify the type of read" the FSS Is to conduct,

i.e., to read a directory file, a data file, or only a data

LI file size.

WI File size is oassed by the Host during

S 0 ISTORE PIL! reouests. This information is necessary for the

FM process to create a temporary file of sufficient size to

tore a Host file. 'ile siz is rela-ed tO the 10 process so



that the In process can go directly t o the data file without

having to check the directory file for file size. File size I
is in bits.

Ac^c- level is ner4ed for the VRI F ItE

command. This allows for upgraded directories (remember, -

data files cannot be upraded).

The idetipi-Xation of the Host system user is

necessary for the FSS to Perform discretionary security

checks. This is .ovided by the -ast system throuh the

userld Darameter.

ACT ptry is used with the A-f *CUJ .TRY and d

iDLFT! MIL FNTHY commands to ive/rescin- discretionary

access tn files.

b. 9i-ectory Control Xodule

Tbe Directory Control o u,0 as the name

implies, does the directory manipulation and maintenance.
.. ...---- u is -.nod ule -

Fiure 11 lists the procedures which wmake un tl=his
along with their input/output uaranetcrs-

hT-s Is the level of the E r- ss at wich

files are known. The Directory Contorl modvle han4les the

readersiwritors p ooblem with the aDoronriate use of the

Kernel syncromization primitives --A.. A ' AIT, and

TICKET. It handles the sezmert fault condition by e call to

the condition ectablisher when th- DosC ility of A scg-, i en t
fault e ?hn 1. 0 a roPcess uses the same -rriitives while

performing its prtion of the data i read and store

=_= -=--i



m_ _ _ _-

FE
IK

UI
'.Patl .naa

IieTp
I- ntI

M_ -i ucc Cr

Dir -nt*r.l !ra nd i~~D r Su:cc QCde

4 lrettfltmeserl D-oceAuresParaj



onralosV'iz., the tree tral-ersal -whola lo--ng thiataI

tr-evionsly wnetlone-a the TC pr-~es uiZ t fr

I'll therrefore

eV ha ve tn e s a b'Ishaccm o- mj h --- r

ZSe _aly Os't r

"ir c e o o n- ~ rf *a ' p _

PI
7=tA Ript!.r fl0 - * ~ r ==y- c 4 ~4 rt

e ]-
n= *k '4-itn$ o Inp'~ A~ concl T;rala--1--- J

secrrity~~~~~ --,-lrscn'-- ae

C-T~r TTI

ah Dirt ('1ti %,gr :th

To rt lrodle trfe- sksrI hlh ~ c pc a e



segment (which contains the file branch/link entry) must be

brought into process memory to check for proper

discretionary access. If access is permitted, the

Segment Handler module is called with a pathname of a

segment reauired to be brought into process memeory. I

ior action on a DELETE ETLE command,

discretionary write access to the directory is reouired

since the bra.ch/link entry of the file must be removed from

the directory when the file is deleted. (Note that this

raises the possibility of a Host having write access to a

file but not able to delete it because he does not have 3

write access to the directory.) If the parent dir~ctory file I
is not found or found but write access to the directory not J J

permitted an approv',iate error code is returned, viz., "file A

not found" nr "write access not permitted". I
If an error condition does nit arise, the

directlry is broupat into process 'Temory and a check of the I
file attributes is made to determine file type (data,

directnry, link). If it is a dta file or link entry, it can

be deleted because it is a terminal node in the file

hierarchy. If it is a directory, the (directory) file itself

must be brought into process memory to see if the directory

is empty (viz., cneck of Entry _Count ark presence of a I
Supervisor temoorary file). Tf it is not empty, an error

code of not terminal file is ret-orned to the Host. If the

directory is empty, it can be deleted,

If no errcr condition occurs lurinp the

66



precedinr checks, the file may "subject to check by the
Kernel) be deleted. The DirCntrl Directory procedure will

call on SeR _FndMake Unaddressable procedure which will in

turn call Mlem H' A _S wapou t irocedure to remove the segment

from process memory if it is in memory. (Remember the actual

order: Swap Out. Terminate, Delete.) Next, the Kernel

primitive, Gate~eeper.DeleteSegment is called to delete the

file from the SS Ntetainhecse of msf s, thfese

steps must be repeated until all segments of the Pile are

deleted. Pt this time, the branch entry is removed from the

directory by zeroina all branch entry elements (to allow for

Kernel secenda-y stnrage conpaction of disc pages of zeros).

The 10 process is then instructed to acknowledge the Host

with file deleted". This frees the entry for future use.

The deletion of a link requires the same

discretionary write access to the directory. In this case,

no further checks are necessary and the link entry elements

are zeroed in thp directory. freeinlg the entry for re-use.

?-or the 14Pr-ATF rIL7' command, analogous action is

taken by the DirCntrlDirectory procedure, viz., to check

discretiondry write access to the directory which will

contain the file branch entry.

10n ce this check has been satisfactorily

completed, ard ronm Pxists in the directory, the Kernel call

Oatekeeper.Create Se-met is male to create the file. The

in .ti al file size is zero f or data fi les since the

Supervisor Yas no prior knowledpe of the size of the file

6-A

- -~- -= ~--=----= ___ ___ ==-~ ~A



that will be stored in the branch entry. As explained

earlier, a file size of LARGE (SK bytes) was selected for

the fixed directory size.

The C'Z EATP LIN4K reauest is again analogous, the

only difference being that instead of a branch entry being

made in the directory, a lirk entry is made. As previously I
mentioned, the Supervisor will not allow a loop state.

Checks will -^t be made at Iink creation time; however, the

Supervisor will "abort' a file search if it encounters this

error condition durn! tree tra-ersal.

The RF i _IL (dir) command reauires read access

tc- a directory file. If no error condition arises during

discretionary security checks, selected directory data

(e.g., Entry _ame, File Size, etc.) is transfered to the

Host system via th e mail box segment (viz.,

Dir_DataBuffer). This selected directory lata for each

occupied" branch/lirk entry is transfered during the

READFILE !dir) command. For the READ FILE (size) renuest,

only selected directory data for a specific data file is

transfered. The 10 and FM processes use appropriate Kernel

synchronization primitives to assure that the information in

the mail box segment is valid.

The last three Host renuests handled by the

Dir Cntrl Directory procedure are related. tain,

aDpropriate discretionary access checks must be made in the

parent directory. If no error condition arises, the action

taken is straight foreward. In the case of the R FD C L

U6



command, the file aCL is transfered to the mail box

CL-buffer ard the procdure returns to the

rmeommand_7andler module. In the case of the

ADD(TITLFTEN, ACL ENTRY commands, the &ctior is completed by

the Dir Cntri Directory procedure and the appropriate

DirSucc Code returned.

The Dir Cntrl Data procedure is responsible for I

transfering to/frnm a Host a reouested data file if

necessary orecondltiors ere met (viz., discretionary and

ron-discretionary security). In order to read or store a

file, a Rost must hive the proper discretionary access to

the file. To check this, the parent directory which contains

the file branch entry must be broueht into memory. This is

done by the SerTent _Handler module. If the proper access is

rot allowed, ar error code is returned to the

?M Command Handler module for relay to the Host system. If

the proper access is allowed, a copy of the file is made in

the case cf the READ FILE conmand. or a temporary file is

created in the case of the STORE_'ILE command. The pathname

and file size of the data Piles to be transfered are passed

to the 10 process which will perform the actual data

transfer. Upon a successful transmission of the data by the

ti T0 process. the v" process instructs the 10 process to

acknowledge the Host with a "read co-plete" or "store

complete. as appropriate.

The Dir CntrlData procedure will make

appropriate use of Kernel synchronization priritives e.

6- 9



AWAIT, RVD, etc
. when copying a data file 

into the data

' A T oL stne u p a t e m p o r a r y -f i l e f o r t h e

fi l e re a d bu ef er or s t i gn - e n

fd or til transfer has take 
P

S store operation. 
After the file

th 0 rces the 10 process returns 
a Asuccess code to the

-oth I rocess, 
r cs

r process. The t0 process will 
return to the FM process

when one of three conditioS 
ex ist: 1) either the read or

store operation is sccessful and co7lete, 
or 2) a commandj

store oper ti o is'

-
packet is received (viz.. an abort command or a

packe i s rot able to

time-out occurs and the to process n

corrPlete the 
co ri and.

For a store operation, the irntrl)uPdate

procescaled t update the directorY data (viz.j
-- pre.cedure is calledil

e1change the temporarY file FntrY.Name 
with the old file

EntryName) ard a eletes the old file. (The temporarY file

should be deleted by this procedure 
if, upon attemptin to

upDate the file. 
the old file cannot 

Pe found.)

Since each directory segment has only one

temporary file for file upaate. some delay ,ay be

experienced bY =ost systems if several try to store large

ax e i n e bye 'Eot appear t v be a

files into th hei ae r c t r Y This iles.

i ce most users are jnticipated to be
__i_ _I alor probler sine1os

-- ,peruatlng fror their own directory rfiles.

The nir nrtrl Update procpdure 
is also used to

free the temporary storage 
file In the case of 

a Host abort

command.

. DiscretionarY Security Module

7 z 
_

-- 
......... , ... ,w ........ -z-- ' ,m I=



The iscretionarySecurity module is responsible

for checking Host user discretionary access to a specific

file and addinr and deleting ACL entries. All file ACt's are

logicaIl v located in this no-tle. This is the only other
I

module besides the DirectoryCo-trol. module where a serment

faut might occur. Appropriate use of the non-ition

so that a rocer return is executed to the Directory Cotrol

module in the event of a fault. There are four procedures

which make up this nodule as 4nDiCted in figure 1.j

The'I 9iscSec Theck- ce-ess procedure. as the name

implies, Ch-Ork fr a sDeciflc user discretionary access tn

a specific file. A success code returns, indicati. t-1e

result of th check. This lIscretionary ch-ck is --ry made

on the specific file which is_ reorire- in a Rost corand

i.e., a desir choice was made ict to make discreti-ary

access checks durine the t-ee traversal searc for the

speciie file. This makes e.rl cit in one Ac;wh has

access to a file, which con tributes to clear security

semantics. 'This also eli"inate4 the ouestion of what to do A

if an intermediate dIrectory was encountered dur-n7 a file ii
search to which the process did not have read access.)

The Disc Sec Mdd _CT Entry procedure addAs an I
At entry to a file A"' and -eturns a succes code to

indicate the action taken. -s noted rreviously, a

has a liited number of ACL entry elements. The S--=nervisor

only e'arantees ore ACL entry element Der branch entry (for

'71



?R0_PDU IPTJ T OUTPUT -

Di-s CS ec ACt DiscSuetcodnie
Check Access 'CtL EntUryj

Use ri

Disc-Se £C. Disc Suet C ole

iddaC Ety't ?ntry
Userid

DiscSee ACL D.i sc Suiicc Code
Dele-te ACID Entry A .t Entry

DiscSec Act Entry DsiscSuetCode
Get Entry User -id

Vtrre 12. DiscretionarySecurity Module_
Procedure I-out/Cutput Parameters r

9 J



the file creator). If another ACL entry is reauired and the

enCL n try pool Is emnty, an ACL entry element will have to

be explicitly freed from a file b-y the Host befo^-e a file

CL can be added to.
The risc_Sec leiete A _ ntry procedure performs

the straiaht f-reward task of de-letinz an aCL entry from a

file ACL. 'his Droc ilre returns a success code when deletion

The last procedure of this module is the

DiscSec_Get_PC- prrcedure i is used durins- the intial

creation of a file by the 'irectory _ ontrol moi. to 2et an

irltial AL CEnFtrye im ent

d. Semnent 3 andler Module

The Segment _Handler module is the abstraction

Sevel at Which Supervisor se.-nents are known. This mndule A

works in con junction with the Memory Handler module

Adescribe-i later). to either brinp a segment into process

M0Morv (vi. Mat-e K'owr Swapj i.- or tn terml-ate a se-r t m

(viz., Swan Out. Terminate). Thi module is resonsible for I
tairteining the FV KST (k-nwn serr-ment tbe-irre 13' data

base. The data base elements of the TM KST are the oathname _

of p a seet knnwn to the proes th em-er t ne

'Seg#- F" the ter-,inal file in this atbnae. Tode (i.e.,

read or writ e , ar the use bit -eces y for a L U re-oval

alzorit : (aDuroximatioT) o .-, ..- e ven' the c .ation wr -

segment has t p .y e --- tut 11 sll

-__- -- -(-__



Pahrm -e Mode-"Swu~w~uuw

AQ

SgFdPatbhn e SeR Sc Mode Use

F.Jim ?ir- 14 13p.met1a e MMduSe

D . .=4 r r-u Ou u' Iarmee1

ACDR NPTOTU

Segnd~~~~ z abaeSg



I ~indicated a n~w~ yaohrpoeS a~nwns

com a Will initiate a rernel call, GatekeC~er.SWaP3=Il

(3c #,BasePddr). to confirm theeitf~ fasaet

Eerel etun o - cgrrt ot ound will I-dicate that the

s sern --ent has been deleted The0 VSS must then clear its data-

stucues n' i~ld data and trverse the Vtrtual-

'hierarchy fromn the root directory to ins ur ta the s e a m e~

t-u ely fgo2 a 1f-atiha not b.een renamfed ,ao~~

roeSS i~. ~cver t- he 11-1 ik lIy sit-uatio whr a

oathlave has bt0-en deeed andten re-creattea 
with the saM

n4i1on-ames Thi Adu' dffP.eren-t sert7ent numbers

t~the same1 Da tbvma me
mm r. 14 is a list Of the protcdiires of this

al le ong with, th i )/out at paan r -Mhis arIO&u-1

re-eives a file sgri ent pa 1.ne 0 and returns when t a

been bcct int %ro5 memry o r ar error coit-f

arse. bepns O1 errr canditiofl that ight i-c returnedl

A m A trj A- '~ I r s 
t h r f n. +aV -S 

0ar ld

I Iresab by the~ 'st procs 
it inopo

I~~~~~~~ -'e 
b a.- .~4o~1yr a Ev*- ress.C

nr nC 
nav

V!.- e~



ktnown and that making a segmient unaldressable reouires

ttermiratiVg the se1r7m"t.1 Beth tasks are acorpishe43 by

appro-riate use of- Kernel primitives and acrompanied by

calls to the MeemoryHandle- modnie to Swapo In or SwaD Out a

segment. M

This nodule Is also responsible for segmientV

mana~erient. Seanent flanazanrt is necessary because each MMU j
allows the eddressire of ony64 sements. With one M]U inP

teinitial Y55 i-vnlenertation arnd several s e.raents ta-ken by

the Supervisor a2- 'Kerne' cegrrnts. the number availa"Cle to

the Supervisor nrocescec Will ~e so-mewhat ls

tAX KNO~N' S:-) tt-ai 64- Th~is nun- -must bemana-eA in
dvnatnic manner without interfferlr~ w1'4 process eecutIon.

Th Se.- End Make Adressa-e nrocediure is the

more i nveda of th e two m'duVe Iro urs f a recuest to

make a segnen't knrw; is rec~eied the TF MS K Ts cnhek d *o

*see if it is alrea-4v known. If it is, the LRU bit is- set and

th rrnryHardier module is a- 11 -= to assure that te

segment is in Droress T.1,orv. Ifit snot already kncown I

the- pDrn -zit -aus t bemd known by the Kernel cafl

7~~~~~~ -aee#r"keRn~(a~s;S nr , mione,1. B ut t his

ne if roc-es sernent limit, snt eh d.

ifthe addition *-P a ser'ent, will ca-use an over-flow.a

segmerntl mpct br- -rmcve Th'r fle See nrd rede 1JnaddressaM-I

a rocedure. Once this is th An0  -irQA- sonent Can be

r-4d kn own, the rr !ST up at--, an em very Yade

mo dul e c alledl t o br in g i t i t o ar e" sm;erinc1ryv.

EEL-



*The SeeEnd Malt -UrAressablp ur-ocediirc

s!:ra ight foreyard4. Th is rrormdllrc --y hp allad to eitheord

deet a specific segment or to dmete thc L- seam-en t. I

- called to remove a Sy U seret ecio is take to

r emoive the s e a-e n t .Ie s cr ib& ed'0 -' -o If U t I o reno ve
L.__ *hT 09fg-_'

tho e FV segment. a TSJU "emoval A-c-ith --- A j~T8*n1 is

h-as ben dAOne. te eny rA rwcd1 iCcalled to

SwanCut the se ment 7-rtntmr~noc - ary, i'p+nt'td success

code in-dicates tbret t-e caren hP C 'a~--4 b h

to ternirate th sbaa -;MRr 'robne 01Call,

N aeee.errnte (-e Se r 7 tv~Cause thj

segment to be d ellet Amr *aKre ~ E~vn h

s-egmt pathnare rm thb e F Sm will c +' th e act on

taksen by th-is Dr CePdUr

e. r-p- AAp

This riodnle operates in a slave mode to the

SegmentHard 04 nodul an,- d ^cnnc, nt rneures.Ths

proceaLures a re litd in figure 15 their
i-put/output pa reret ert. T al- inb of ths -oaule is t

-ynamically manage a fi I sielna irtua memory, T4

does this by 5wGDDcflR -I n or-o s~ocs negry s et s

a7s recauir el.

Wber the Pe- ASap1 prceure iscaldj

the E' ST. fi~urP V29 (aty sc able) ischecked to



?DROC!DUR 7  flFTOU7-PU?

M e..n End S vo ' Seg_ mo- ,ucc Code
SeaSize

MnEdSvnu (tu Sieg Mer Su-c ra4n

Ntv inure 15':. m5emoryHaniier-Mdl

:eco~ro Tputfoutnuta ro-t

COO Size j-aseMar-l

Klte16;. 7FM AST

ow' 1 -g - i ase_ ld d

Fie- 477 Men lieD



see i it s 8 1n~Ayir: rtry- I!it i, its LuW bit ~ e

an1d Gatekeeper.Svan In Soo- _i" ..ase Addri i s c AIe d to

*- _ _ _-3_ __I -

rcess since lat*-e

"4VM MAP Aa C tc tr s1z u-re is, -; kA+ z-

I_ A I
r ;z _ r t _ + -2 __

-lt~cc ow tu p-A t1 - o d-4- to -

s etzee~r -j .M C C6), is

stecif it se_-. -t '- t *Oen -e the ? s e rflt 10t r FC_

T 4'I --I Tn p --- = M -- -

taskry. IfThe foreP~ a caa r isy aA pcfcsa-nt

re m ~o v e a _____ r t 0- CAM -uy lq ^rT ~ Y ~
IS~~~~M ,cc a- Ayn * n -1 1-- t re 7_g0 t

bases are un-dato4  ref ec the seremet removal.

of __ .i-q 1

at least 241!-te The A r rat

aste fatuat tdatesA*-t zss ot ffI



may be required in process memory during the copying of a

data file into the data file "buffer". A 24K byte memory

would allow for the worst case, viz., one SK byte, segoment

Dcsitioned in the middle of liniear memory; room would still

exist for the two SK byte Sep-ments.

3. Inpu-t/Output Process

The 10 Drocess is the second of the two processes

which act on behalf of a Host systen to provide a requested

file management se-vice. The 10 process acts in a slave mrode

to the FM Drocess: it receives its commands f ro-P the F M

pr oce ss via the shared mail box segment described in

connection with the FM Drocess.

The 10 process is responsible, as the name in~lies,I

for all input and output between the Supervisor and the Host

systems . The 10 process is composeli of five modules as

depicted in figure 18 (along with Ker-el calls). Two of

saine morlules as describerd in tho FM process and will not be

discussed frrther. Their task is to brinpg into the virtual

memo:,y of the 10 process the data segments into and f ror-

which lost files are stored or read. Note that since

discretionary security checlrs are done in the FM process,

the 10 Drocess does not have to repeat these checks.

Direct invocation of' the Packet Handler mnodule from

the TO Comm,- 4 andler imod 1l1e i s possible t o send H1o st

~a cknow 1edj eme nt s" if a file is to be read or stored, the



LEM'*ail Box To CommandHandler

Gatekeeper.
Ti cke t
Gatekeeper.
Advance
Gate-keeper.
Pawait

File -i~dler
Module

Segment Tandler Packet Handler
Module Module

G7ateikeerper. Gatekeeper.
MakeKnown Setupo

Gatekeeper. va tekeeper

Termiinate Send Packet
Gatekeeper.

St ore Packet
Gatekeeper.

Change Byte
Counter

Memory-9Haidler
Module

CGateiceeper -

Gatekeeper.
Swap Out

Fi.gure IS. 10 Process Module

;"SU



File Handler module is first called to perform the read orI

The 10 process is also responsible for ESS-Host,

protocol. Data is transfered between Host and FSS via fixed -2
size packets There are three form'ats for those packets:

1) a synchronization packet format, 2) a comman. packet

orria t and, 4 ata packet -format. Fifgure 19 gives the

logical construction of the data and command packets. TheI

svrchrorizatior, packet Is left for later design in

conrection with the desian for a Host interface. The packetI

size of 521 bytes. for data an4 comimand packets was Chosen to

maxi-ize lata transfer e-f-fciency at the expense of

inceasng he ommndpacket size. Because 512 bytes is the

size of the 'mallest Supervisor segment, this was chosen as

the "unit" -.f date transfer.

A protocol Im'ist exis. that insures reliable

transmission and reception ".f packets by both the sender and

receiver in the FSS-uost packet exchange. The simplest

protocol tbat will handle packet trarsmission is to transmit

tackets one at a time anO wait for packet acknowledgement

before sendifl, the neXt packet. The followirg diaeram4

illustrates this simple protocol.

AA

Pt k tnTr
-- - - - - - - - - - - - - - - - - -

Lek



DATA PACI(ET

Packet_Type 'Ryte

Pcet N4umTber wr
Pata 512 Bytes

CheckSum Lword

OOMN)PACYT A

Pack~etTy#pe Byte

Packet _Number Tword
qost _rid -Qvte
Pat+,i'--ame 128 Byte
'File Name 18 Byte4

Linic 128 Byte

Access level 3yt
File Tpe 3yte

A01,_7ntry 3 Bt
User id Byte

CheckSum ;Aor

Fiziure 19. Packet Construction.

E-I



Overatirg in this fashion is extremely ineff icien t,

especially in the transmission of large data files! it does

r;o t allow the s en de r to send oackets before an

racknowledg~ement is received nor does it allow the receiver r

to accept mrore that one packet at a time 'i.e., read ahead

and write behind). A multi-packet protocol is necessary to

ta*-ke advarl-a e of a read ahead and write behirl scheme.I

I n specifin_- a multi-nacket protocol, some means ofI distinguishina ipdividual packets rust be established. This

is done by nrivina each packet a seauence number carried in,

the packet .ealer . Th e receiver re-turns cnweeret

inI!i c a t ir the seannce numnber of the pac-ket's) received and

accepted --i.e., no0 errors detecteAd). The number of 'oackets

tha t may be transm~ittad before an acknowledemet is

received is called the Da,-ket "window width". Packet

transmission is controlled by an al~orithmr which 1.,ses packet

s eoa'Ienic e numbers and th - wind ow wi-I th. At Sy st e

ini tiali zat ion time and anytinmE a c o rmman r Dacket is

received, the seouence number of th- vSS is reset to zero.

Thus the first senvence number expectedA by the FSS upon

system initiation .-and afterwards UID07n command com:leti on)

is zero.

70r. an explanation of how the oac~et window works,

le-t N(t) denote th tra-'s-itted s ae nco- number o0 thp

z--rrent Dacket and let 141 t + 1 d e no te the next ex:oecteed1

secuerce -umber. Th ndew width is .enotled 'by W. A t the

start of c o. mu nitnn, _.R., wn'~aps ed rnadt



- - -

the FSS, the East is allowed to transmit packets bearing

seausnce numbers in the range 0'N(tVW. The receiver expects

the packets to arrive i, correct seouertial or er. As they

arrive, packets are che~ked for correctness 'at both the

hardware (USART) and software level); an incorrect packet is

discarded and may be considered 'lost'. 1et the seauence

number of a particular corr -ectly received Dacket, be S. If

h(i.e.. te expected packet), then the rarket is

received in the correct sroue,ce and it should be accepted

by the receiver and ar acknowlexie-ement sent withll the proper

seouence number (Xin this case, S) to the sender. ifI~i

S-.%t-i), then the vacket is a revetition o a packet

previously received by the receiver; the second transmission

may be due t^ either a lost or delayed ackr owledzement. The

receiver should generate another acknowledgement and send it

to the sender ard 1therwise ignore the packet. If S>(t+1), -

then the packet is ahea of seouence, indicating that an i=

earily pacr,. :as been lost; such a packet should be ignored

and an "error" acknowledeement sent so the packet can be

retransmitted.

?he arrival of ackrowlediements at the sender also

needs to be discncsed. As each acknowledgement arrives, the

sender car delete the copy it has retained of the

correspo dng, packet AS packets are acknowle Red, .r...

packets car be transmitted, i.e., when ;acket 0 has been

acknowledged, packet W can be sent. Acknowl-e agen ts can getA

lost in trarsmission as well as packets. 1 a received

-_-_ - -__ -- ~ = ,-- = -_=- _ 7.-



-~~~~~ ----------.fL - ~

acknowledgement does not refer to the earliest transmitted I
packet a-aiting acknowle~erent .. the-, in this pro+oo' .hn

sender may safely delete all packets up to and including IIthat referrced bty the acl-ncwledIgerient Against eahcopy of

a transmitted nacket will be noted a tine (i.e., the V

t ime-out by which time th packet rust be ackw',wledged.

Failing such an acknowledgement, the oacket must be

-etra-siritted with its orip.inal secuence number. A packet

will only be received in secuential order, so it will be

netessa- to re+ras-!it nnt only the earliest unacknowledged i
packet, but also all later packets. The followina fizure

illustrates this protocol. The -ueues shiuld be considered

as circular with automatic wra.z-around.

---------------- ---------

Packet 5--)

<-Ackc 3,4V

in this firure, tre sender is node and the

receiver is nod- S. Node A has sent out packets 3,4, and

the last of which is still in transit to B. Node B has

received all jackets un to and including 4. It has just I
acirnowledged 3 a-4 4 and is ready to accept 5,9. and 7 w'hen

! they arrive in order. Wher node A receives acknowledgement i
for 3 a nd 4, t1 will bDe able to tra'nsmIt succe ssful Ily
packets 97 and, 7 .

This Pre !oc irsures that packets are handle4 tn

6 Z



seouential order which will insure that the data is received

and stcred correctly. It also assures positive control over

the receipt and transmission of packets; a necessary

reanirerent to nrevent buffer overflow and loss of 4ata.

The Yernel controls all the hardware assetB, as

explained in Chapter 1. Kerrel calls are therefore necessary

to transfer packets between the FSS and the ?ost systems.

The format of these K nel calls are:

Gat ekeen,-er . S etwo (Buf f Addr, Mode, Status

Tatekee-er.Send Packet 'Offset, Status)

;atekeeper.StorePccket (Offset, Status)

a-tekeeDer. Chan ge Byte Counter (#_ of _ytes,

Each har4vare port is virtuali?e into a- in-put ad

an output Dort. Tach virtual port has associated with It a

unit control block (U(B) at the Kernel level. The elements

of these Cr?.s are:

Byte Counter: This element is use-i to kee trac- of

the- number of bytes that have been transmitted or received.

This courter is modulo "packe size a_ that -?,:te DaCk't5 j
are synchronized, they should remain so. it can be altered

by t--p Change ByteCounter call in order tn get the -SS 75 a

Tost back into racket synchronization.

Buffer Address: This is the startinr a-dress in the

input/out buffer where Dackets will be plaeed in- co!n:,) or

taken from (outgoinu). It is inttialihed by th Setu rnel

call.

.17E
A-

*97



Tuffer Length: This elerent is the length ( in

packPts) cf the 1r-ut/output buffer. This allows the Kernel

to perform automatic wrap around at tne end of the buffer.

Wirdo Width: Thi element is used by thie inut port

UC to Drevent buffer over flow. Each invocation of

Store Packet will advance the window and allow another

packet to be stored into the I0buffer. If a Host system

violates rotocol by sending too many racke"s, the Kernel

will dunD them to a bucket". It'i iene: is used by

the output port to control the nw - be- of Dacket t the

FSS is able to send to a Host before receiving an

acknowl-eizemer~t. Althourh this -Parameter (viz., window

width) may be different for the various Host systems, it

should not ch-anre often a-d can therefore be set at system

initialization.

Yo= a store operatior (FS to receive packets), a I
Setup call is used to set the input UCB base address to the

initial storage location in the 10 buffer. A Setun call is

also reouired to set the outnut UGB with the base address in

the I0 Imffer from which acknowledRaents will be sent. It

should be noted here that the 10 buaffer iA the IC process is

the location that parets are checked for errors and

Tenpackete&" or "'depackete". It is just a intermdlate stop -

for data ani neither the final destination -or origin of

Subseoue't K-e!r el calls t, Snre ?acket will retu n

the locat ion of the next Dac re in the .0 tuffer to be

4A g



A

processed. The Kernel will store ahead into the IC buffer

durina the store ozeratton but will not over write the

buffer. That is. eal'% call to the Kernel will indicate th.:

a new packet location is omen. The 10 process will control

which nackets ad.. h-i Mary) are sent to the FSS by proper

use o acknowledreents 'for both correct and incorrect

packets).

Two Setup calls ar-e also necessary for a send

operation. They again set the virtual input/output ports for

the transfer of -akets fro m the FSS to a "ost. Suoseouent

calls to Send Packet indicate that M Packet is ready to be

trarsmltted. The 10 'r^-ess knews when it can discard a

acket by the acknowledements it receives froT the fost

syster.

The chance yte Counter Dri-itive is used by the

syrchronizati., 'procelure tr shift a UC' byte counter inW

order to briue packet transmission back into

synch roniz a t Ionr.1 -Schrorl1YatIor~ may be recuire! during a

temrcrary comrn-nicatton irterrunti on or syste, start up.)

The fo~lowjrp is a iescriptior cf the three new

nodules ;Mic& make un t.he O process.

a. Inut/01ntout Comand Hanler Module

At the too of the 10 process nodule hierarchy is

the 1aAaler r'odule tsee 'ponnd I C, p. 117). This

module is responsible for the interface with the F" rocess. ,

Cormunication between the vroresses is via the mail bo

.. . .. - . ...- - -- = I - -t -- _



shrd emetar yhonization is through the- use of an

eventcou t ar4 the Kernel D-riin-it 1v es TIC"KET. ADVANCE and

AWAIT. ~ Th roeures of this module along with their

input/outbut parameters are listed In firurm 2?.

The 10_0md, -_nd procedure ieteF w n

Oroceduro a oace state-er t, routes F- -process ir-structions

ta sne--ific TO rcmmand-randler Procedure for action .

The pro-edure- irvolv-d when the Host command is

no t aRDlorSOY'TL? reauest is the ICCnd Hnd Ait

procedure. T hiS DrOCelurP is ab'le to invoke te

D'racttinAlor i'odtde directly f or nerf-arminz directed [by

the FM Dr esclsN~ ackn!ow~e~e-rm-mt ard/oer 4Ata trarsfer

from tns~ared m1 box sezer-ar

The 10 C-ti EraScnA an 10_CnA End Store

porccedt1 s are relatively strai-t forwar4. They trovide the

IC-F" Drrocs irtorface reoul red for a iE;ILEVTA or

STOBYry~ o reoups t . rt rcnrs cl h

11 Fie HRardier mndu hr to -r--fnr- the actual frile re--ipulan~r

b. ?'ile -andler Module

Th l anl r yroule Is required for file

raniDulatlon in the, TO process and is the level in the 10

-rocess at which "ier, are kr owr Th procedures which rmare

uuj this module aloinc with their i.put/outout parameters arem

listed in f~mrr 21. ;s -rotione4 above, there are only two

Vcs r-aeaucsts that ron-ire the 10 -oess to bring, data-

f ile s Int n Process 1newmnrv. Tbha.e a-p READ 1-1-7 and



PEOEDEF IPUT OUT PUT

10 C'md EUnd Mail 3qox.Msr-.Inst Output reure

10_Cird Mrai 1?-ox.Ms--.SuccCode from s,!bordinate
Fnd ACK ; modules.

IC~~j-ai Sed 'n x.YMse.'File Size

Ir.CCrA M"~.s.e~a'
0r Ctr e ' 1 2 ny M 5 z.rile Siz

F~~rur1 2? ICcommand--Handler Module

F ilEn rail Sn~o.Msz.Pathname rile Suce CodeS
S t-end FiIe r=ail 3onr.Ms--P'fle Size

'Figure 21 . File Handler ModuleU

Procedure TInput.-fOut put Param~eters

91

___~~~~ --- --____ ~A : A _



FT~~ tT-? fl oe Tat sin-ce ies-ei rsccna- 0.o the FM

roess, and the tbe access to the data files jV~~A I

controll-ed in the YM mrocess, daafiesrPe:L

brc~htdircty Tto C rocess !re as nA a-v requirer'ent

for the TO process to access -oi rta- yriles oerta

tree traverseDl i Ic limnt-4 B__a __ th ___= rnpr

t ree traversal are con-trolled by the 0 -css h

tmol Is___sd-b th

ats t thse ite!a Aoe ilno eatral ni

:"Or-dres I Fiw e Send_ ffo _ r t rl

a~p bye V nroces

a4d Frlereiv._

procedures operate siiar manner on =0V

atnam-e and f ile si ze Oronm the F? re^^cs. ths procedures T

se the Sbegment -7andler uroced-ures bring t+-e nees sar y

data f ile (sgrei.s)inouoess w4Cov + -al he

ade to the ?ackret Thtndlnr module to transfer da-A from/zto

s-eclfied sernments.

The order of events 4, the readin& n prr

ofdata files follows the fnonwi-, ceauermces. For- a

?tFI operatl3l. the order of actions taken by theI

Sup~ervisor are:

1) s fl retjonary and non-Iiscr'etionary checkrs-

armade in the FM process.

2) A copy is made of the datua file intoa

Der-process data file buffer.

.)The p-athnar'e of 4 ata file to be read
_4 f 4



I.remember, directoryM data is read by the F7M zrocessl is

nassed to the TO arocnss alote with Tefile size. Th.e 1

but by nassine rile size tn the 10 nrocess, t his sn +Sc'

41 T h e0ad takes ri ace In the 10 n rotess. -iai

cde:: Teo_ __-s" a_ ratn,-rs o to fhaocessth I
rocess is th eeo fa- at-rt -omman2ro h otfo

a ti mue art -vb--irch would4 occur If the Hust s*I1^,_no4 sf-dr
for some uYnoxniaisel reason.

r- Yb TMU -pp-tess irstru"^cth To proess" t n

ackrow le dce the read cornlet - r e r-I t a appropriate

error code. 'b' data file reac b Afer s then ,. for

further use.

1? thea nat4no is a SlIo~R W-TU eperatin~n:

fellowin- sterns are taken b~y the Supwervisor:

11 fliccrctlr-ja-- an 1-ron-dlscretiorary security

checzs are made by the v rocess.

91 t e-.-n rawrv ' is created by the Supernsoi rI

lain entg to store- 4i"e in. !pnropniate use O' tb

syiichronlzatlor primitives wr-v-nts 4this trmpporary file- f-~

being use-d by wcre n o br1r. at a :ime.I

3) The vathna-- nto the temporary file is sent to

the 10 process ar-A the 1n. r-ocess store s the file into the

temorary tile



4) The 10 process returns a success code to the

FM process and the FM process updates the directory to

reflect the new file (viz., Entry Name of temporary file is

changed to the old file Fntry Name). The old file is then

deleted by the FM process.

5) The FM process then instructs the 10 process

to acknowlede the "store complete". There is no reason a

store operation should fail other than an explicit abort

reauest by the Host system or hardware failure.

c. Packet Handler Module

The ?acket -Handler module does the actual

transfer of data between the FSS and the Host system and is

the 10 process level at which the concept of "packet" is

known. The procedures of this module along with their

input!output parameters are listed in firure 22. The tasks

that this module must perform are: 1) synchronization of

packets, 2) error detection, 3) packet acknowledgement, and

4) transfer of data to/from Supervisor segments. Figure 23

is a finite state diagram of packet transfer.

The synchronization task is performed on the

system IPL and whenever packet synchronization is lost

thereafter. Frror detection and reauest for retransmission

upon error detection are complimentcry functions which are

perforred on every Packet received from a 'ost.

Packet transfer -uring synchronlzation

procedures is in Rrouns of three. This allows the

94



I PPC rD UIR N OUTPUT

PkEnd _Sync Sy-c rnd ?acket Sync

Ack Mail-Pox.msP.SuccCode

Pk Ynd- Data Packet
Send

Pk Hnd_ Pack-et Data
Store

vievre ?2. Packet Randler Modul1e

Procedur'e Input/Output Parameters

95



read sync-.

Ready -for serd sync reply

c~~~ndCm cra-kemdcake

abortto i"1 orocess

'Figure 23. 7?inite Statp' Iia-uram of Packet Transfer

AI-



synchronization procedure te begin synchronization in the

middle of the first packet and still heve two Packets to

confirm synchronization when it is achieved.

Packet transfer of command packets occurs one at

a time. The reason for this is that each command Packet must

be acted uPon in a synchronous manner. Data packet read

ahead and write behind is permitted to increase the transfrr

rate of data packets. The number of packets that are allowed

to be sent or stored depends on the IC buffer size. The

Packet Handler module is also responsible for data

enpacketing and "depacketing for the FSS.

The Pk HndSync procedure is useA to synchronize

packet transmission. It is explicitly called at IPL and

whenever the packet synchronization is lost by the Host

system. It Is Invoked implicitly by the FSS whenever a

packet is not able to be decoded .viz., the packet type and

packet check-sum are incorrect).

The Pk_HndAck procedure is used to send

acknowledgements to the "ost systems. This procedure will

always be called from the 10 Command Handler module which

will reauire the Packet Handler module to either acknowledge

the Host with a spiecific message or to send some data

located in a mail-box seement buffer to the Host.

The PkHndSend procedure is used to transfer

data segments from the FSS to a Host system. This procedure

is called from the File Handler module which makes sure that

the correct data segment is in process memory for the

tit_-

:-- )9?



transfer. The segm~ent num~ber alonp. with the number of bits

that are reauired to be transfered are passed to this

procedure from the FileHandler module. This procedure then

Stransfers the seement until the specified number of bits

have been transmitted. A success code is returned when

action is complete.

I The ?k_7ndStore procedure wcriks in a manner

cnmpletely aralo !nus to the ?k Hnd Read proceiure.

I'Q



I. 11lt CONCLUSIONS

a. STATUS OF S I

This desiin applies state of the art software and

hardware to solve hesez';re multilevel computer problemn i n

a file st,,rage ste.It presen ts an inexpensive but highlyv

Dowerfiil desizn for a system based on a --icro-cotmruter tut

no't restricted to a -im-co-m-puter environm~ent. i.e., there

s 15 o restictior o'i the typ-e ol Host comzuter system

serviced by the FSS. Prple-e-tation of this design onc~

hardware alonE! with the analysis of FSS desian parameters

Is-PpendiTf A) are tasirs left to be done.

There are two ma'or classes of applications orthe ESS.

Cr e applicat~nr uses the VSS as a syste-, file system (e.z..Ifor distributed micros). This imulies thtat the total sy stem~q

is multilev el s-clire with conly one secure comporent (i.

the Kernel). It must be noted. however, that in this

corfiguration. the distributed Hosts fi.e. * the micros) have

no autono0mous life.

The nth er C-las.s of apD1-i Ca ti ns inivolves usi n the FSS

as one element of a -net of autonotrous .-ost systems. In this

ccnfgur -n.~ the -S3 nroviAdes facilities for o ro 1

d1ata sharinpg an! comm-uication.

An obvious direct aDiication of the 1'SS, is for

shipboard A se !e-v., for th-e SNAP-II system rsm-1ithi ) or for

use at other 4installations where 4ata wouli be more

efficiently usedA if controlled data sharin; we--e allo3wed.

-C



A majior desi!-n choice af t'he FSS which allowed te

Kernel to be Irent small (and tharefore m.ore easily

Efverifiable!. was the ell.iat o h d is cre tiona ry

=security from the Kernel domain to the Suoervisor domain

= The implication of t1s choice ista ahhL ytmi

responsible for its own 'iceiVr ecrt; nta

uanreasonable recuest or desian choi ce.

The next maj~or task to 'be accomplished in this proiect

is ESS i-Dle'-prta+4n". This Will not be a trival task, 'cut

=it is fel1t that the desie-ns oresented in. this thesis and the

companion work done by C0le-a DrMuidPe a solid basis.

7011LOIOW ON WORK

This desip-r is a specific implemrentatirn of' ore memrber

of a faimil 1y of' o-er ti R sy s t ems based on. the SecurlI ty

Kernel con Cept dlscusseA -by OC e 11 a d Richardso-

[O 'Conell]. There are obvious areas that this desian couild

be exparnde 3rd gen~eral lzei areas thatl should be examined

after a successfUl- firt mzle Pentation. Some of' these areas

are:

onera to r termi-al interface f-un cions

expanded ;Rnst cnr'ma-As

maz of different 'u ser na-es in lifferent Hosts to a
c omm on *user* in the VS S

data compac t ior ontl saendla-iv torage

multilevel uosts

moving: discretionary ser "ity into the Kernel domain

12



U
r
S

dynanic or-cess creation/deletion.

These are just a few of many possible areas for

exparsior that could be evplcred. Ore area not mentioned ir

the list but an area that should be looked at during thQ
initial i!rpleertaticn ts for a way to prevent the

Supervisor from sufferine a seam-ent fault . The uresent

arrargerrent, with a fault hand!er, is not efficient or
elegan-t". Since the0 eti -r of a segnent Is controlled by

the Deete SePer t Kernel pr i r tive, a method of leavin an

orvhan copy in process memory would eliminate the fault
c rAiti r The oriy neratlon that would be defined on this

orrn :would be a DeleteSegment command by a orocess to

remove it fror process memorv. A.fter It had been deleted by

al! trocesses. the cory could be destroyed. % variation of

this scheme wunld. upon a Kernel Swap In call, swap into

process memory a per-pr-ess cony of the desired segment.

Swap Out would be used- to pree ocess memiory.

I

-- -- - --~ -T § - - Li ~ =~ -- __



SMALL Segent size 512 bytes

MPDIU Segment size 2K- bytes

LARGE Segner size 2K bytes

MAX F!Lr SI7' Max fie s i Ze 25 bytes

#MAX ENTRY aa r entries

A.%T POOL !l.a x P-1 entries 1224
per directory

?athleieth Max 122 bytes

-ntry Nane Size It bytes

Known Segments Mar per prscess

-1-

INS

1 2

- I

__ 1?-2



AP7rY -SUCCESS ANr :ERC-4. CC-1S

V.- ULOCAT ION

Vi 1 c C rea

S t n.ro Cci--p" ete

o r'

n 7 -el nir~ trectr'-y C-troi

la -a~s tnt el--

"n lV..

0- rm Tr

VrC-~ tr-r

19



TU
FUL

-S-y

LINU R S Cil-;

117-- Cp B.

reat file.

a- vB ; t ?renp i
rs~yTr,

Cfrt~

aI 1I
Rb UN 'Dn = i: ' L OD

!for ost Z~c ta crcass eafjlo



DO~lt

GLOBA VuA1
0t 'cs -Mtnnto atcs

-t

-fT -- Y: -- r >2 -

MTT

fl
TT -V v z~ m- %- §--

-M' Tr Try N!Z -7 TA~-v- n

M--------' MITZ --

M T - -- WI-Z- V Tr 7T

0--!



I NTFRNAL
MSG TYT'

FM CMI? END DELETV FILE ?ROCV-PURE
ENTFPY

DIR _CNTRL DIRECTORY (M sGl
US FRIDI

NULL ! file type!
NULL !access le-.'el!
NULL !linkl
NULL) !ad _entry!

!retur-s dir surc codm!
IV' DIR SUOC C' 0) TRUF'

THEN
MAIL BOX.MSG. INST :-ACK ROST
MAIL ?OX.MS,7.PATTNPMF :N ULLU
MAIL B0X.MSG.FILF SIZE :=NULL
MAIL BOXv.MSG.SUCC COD? FILE DELETEFD

t rGTKVVPTIOE (M1~ ITPX. C)
GATEKFPPER.APVANCF (M1AIL_'PCX, C)
GATFKERFPER.AWAIT (MAIL AOX. C. (t+-))

LS3
MAIL 3OX.MSG".INJST =ACK _HOST
YAIL BCX.MSG.PATHNAME : NULL
MATL _?nX.mSG.PILv SIZv : NULL
MAIL_3CX.MSq.SUCC CODE : ERROR _CODE (Przi SUCO COPE)
!01ile not found; write access to dtrectorv
not permitted I
t := GATEKEFPER?.TICKFT 'MAIL BOX, 0)
G ATE KF YP F I ~D iNC F (MI LR5C, C)
GATEYFP"ER.fW4qT (MAIL 'OUX, C, 't+?)'l

END FMCMDEND DFLFTF FILE



FV' ANDi !'ND CREATF rILF PROC"DUTE
F 4'Y

rp cREAr FILE
DIR..CNTRLIJDIPCTORY (MSq

P A TH N AM E
F LE TYPE

)ULL !1ink!
NULL !acl _entry!

!returns dir suec code!
IF DIR SUCC C'ODE TRUE

THEN
MAIL ?0X.mS('.INS' A= vC-(TTO5 T
MAILBOX.MSG.PATH)AME :=NULLT
MAIL BOX.MS'7.FIL?_'STZP :L
MAIL OX.mS'LSUP'f rOD PTL7 'RPATFDI

GTATEKFFPrEP.ADVANCE (MAIL ?OX.I C)
G P TF Y 'P R A W 1.T T MAIL 'DOX, r. (t+9))

ELSE
MA IL BOX. MSG .I NST C' VCGST
MAIL OX.MSCG.?ATIINAMP KJ= NUL
MAIL BOIX.M.SG.YILrF SIZ17F~ L
VAIL_"6OX.MSP.SUCC CODE ThF ROF COD! (DI'E SUCC _COD7)
!dirpctory not found; write access to directory
rot poerrni'ted; lirectory lull!

t GAT'-qEPFP1.TICKFmT (MAILI 30X. C)
GATF PFrP.APVA' ( 'TL OX,)
GATEKEEPER?.AWA rr (MAIL_ 'BOX,C.t2)

t'1D FMCN'T)_ENT) C1FFATvFILU

I 0



I-M
M CD CRA1  pr,~ ? DU R r

MSG :'rECBF. ELINK
DI;'. CNTR'1 DT'7TORY (MS(T

USF1'.ID

NULL T f i Ie t yp f
NULL faccess level!
LI NV
NULL.) fad _entry!

!returns dir succ1 code!
IF' DIPSUCOCODF- TPUP

MA I LBX.t1SG.INST := ACYHOST
MAIL _BOX.S'- .PTHNAV2 NULL
Y.81 ?OXoYMS'.v1Lr STZr : NULL
MAIL BQCX.MSG.SIUCC CODE : LINK CREA T Fr
t GA TEE?P.nTfCKFT (V:!IL BOXC
CA TF FPP . IV 6NC r's MSTI, POX,
G ATE K YTP E R A W ITMAIlL-BOX, C t+2))

ELSE
MAIL TOX MS17rI MST := A'K TIOST
MAIL BCX.MSG1.?ATHNAkME :~NULL
MAIL BOX.MS".JILPSIZF NULL
MAIL ?OX.%ASq.sUV'rCODv P ~R,.oR _CO-D !(DIqSUrC roip)
!director' rot f'ur ; write access to directory
not Permitted; directory full!

t := G T -r''PvR.TICK~T (MAIL 7OY. C)
GVATEF"P-13.AnW ANOF (VAILBox, C)
GATFKEPE.WIT (MAIL 3OX, C, (+)

Pi
END FMCMD H Nn r REAT FLINK

1q81

A~-~~ 
>,-

- N i



IF __~vTY?? PATA

*S G PEA.) FILE
DIR ONTRLI. TWTA ' MSa-

?ATHN A MF
NjULL !file cize!

!returns dir _sicc code, dir 'oethname, dir file size!
IF DIP SVCCCODF T-DUF

=MA ILB BOX .VS07.IIST :READ FILE
MAIL BOX.MSG.PATHNAM*' 'DT I PD ,T1N-'M7
'!AI 1 OX .MS(Y' FLv SI7 ' IR FILFSIZE
MAILBOX.MSG.sUC Cr-tT NU L

t GATE'EPIPTICKT -A.1IL TOX, C)
V.A TFKPPP A V AN '- !AfIL POX, C)
GATEKEEER-AWAIT (MAIL_3-6X, C. ,t+2))

IF MPIL_30X.MSG7.SUC CO'DF =TRUE

MSG := HIATP REA'
DIE CNTRLU UT2ATF S 1xv

U 1, 'RI T
PATHNA ME)

!uipdate will rotl fail!
mAIL vOY . 'S .IN ST :=Ary ~!S
MA I LBOX .MSG.?PA THNA mv UL
MA LBROX .MSG .FI LF SIZY NULL
MkIL moX.*'SG,.S1JPP ("17 RvAD COV,?LFTv
t: GATEKEE TTCrv- ,MAYL' ?OX, C7)
GATFK3FPYFF.ADVANC7 'MAIL BOX, C)
GT~vr7P--AWPIT 'MaILT m6X. 0)

FL SE
MAIL_3OX.MSk'T.INST :=ACK HOST
MAIL_?CY.fMSG.?AT'1NAMr NUL
MAIL 3OX.mqP,.FIT;?_SIZV NULL
MPIL, BOX.!MS'TSUCC CODE XI L BOX.MSG.SUCC COT)E
!error code returned from i0 pD'ocess!
!filt! rct fcund 'by An Drnvcessy
file read aborted by write;
file read abtorted by file Aeletion;
C-.-! pac~rpt. receile.!

t := -"A1Er!PFF.TICKT (MAI- -BOX, C)
GATrKvvvR. AnPNCr !mAT!_SOX, C)
P1ATEKFP?F?-.5WAIT (NvAIL B-OX, C, (t-;--2))

ELSEA
MAIL BOX.MSG.INST aCKUOST
MAIL ?OX .MSO.PfTHNAM 'v: NULL
MAIL BOX.MSG.FILESIZE := IULL
MAIL BOX.VS"7.SUCC CODE :F EPROFiCODE (,DIRPSUCO_ CO'Dv)
!file not found:
read ancess t file "ot Dermitted!

S1 'A0

- - = ~ ~ - -~-==- 7,



V- Anaer MAIL 'ox, C)

GAmKFFR.AiAIT /MAIL BOX. V, 
(+

Fl

IF FiT.- _, yp - RIRCTC.EY
TH1 ZN

NULL I!li 1Lkt! u

NULT T acl entry!

!ret'Ir'- lz sc
I?~~~ ~~ T)RS-_YOr-_

MALOX.mSn.INSM 1CK _ {OST

v'1)L OXmS".PATFAmFT N NU Ll
MAILBCX L-cFIISlZ7 :N'ULL
MpILO T S TT CC CODF D ; - COV-PL-:rv

!dir data transfered ?rom! Air buffer;

aclk-wleirmers -S-t!
la~Fvfrp~p .IC77T 'M&IT,_sox. C

GA&~VftN"P' 'M IT DCX. C)

lATFKVP7. AWAIT 1(MAIL_30OX, C. (t+2))

MAIL -cX.vSG.?AT~lAME :4ULL

read acress to lirectory rot permnitted!

t -'- r~r"-?.~rvf MATT V0 X, n'

F LS F
--"-D vNTFY DATt

'IR rTL!3'T05Y 'S
USEDIL'
PA TN PME
tUT 1. !fi le _ ype!
'JIL !access _level!
-NULL !iPk

!returnls lir _succ colte!
IF DIr SUCC _COn-v TzUl

MATT BCX.mStG.IN4ST AC HOST~

MIT WNY MS(.THA 'JL

-A~ILBOX . YSISUCCCCD1' 'ET-

-- ------



k7
1Fltr-y data trarsfered fromi dir buffer;
acknowledpgement sent!
t (' GATFKEE?ER TITPv-!T !MAIL POCX, C

MAT POX.MS1,.IU1N' _"O, HOS

t ATFYFFP'FP.TIC7FT (M&IL 5OX, C)
rTy"P.? aV"Wr !MAJL 'ox, C)

GATEK*TEP1?R .AWAIT 'MAITL 30X, C, '%t+2))
FI

'FI
F!

EN~D FtM CMD HND ?EAD FILE



FMCMD FIND STOPJ? FILE PrOCE!'IrErz,
ENTRY

DIR CNTRL !'ATA !MSG
USETRI D

FILES IZE-)
!returnis dir Dathinane; dir succ cede!
IF DIR_-SUCC 07" = TRUE

THEN
MAIL BOX.MSG.INrST := STORE PILE
MAIL ?OX.MSG.PAT7NPm-v
MAIL 30X.MSG.FILF SIZE IESZ
MAIJ 'BOX .MS17. SUCCCOD? 41U
t =GATv-K"7pvR.TICUvT 'MIL TOX, C)
GATEKEEPER.ADVANCF MAIT-POY C
GATEKEEPER. AWEIT (MAIL BOX, C. f++2))E
IF MAIL voX.m G.SUCC r6Dr~ T=~

TH -1
MG UPDATE STORE

DIR CNTRL U?!)ATF .S~ CL
US VqI D

!update will not fail!
MAIL BOX.MSIG .I NST :=ACKHOST

MAILBOX.MSG.PATHN 1M "L
MPTL _?0X.M-SGFTLP_ STZ" := NI I.
MAILROX.MSG.SUCCCC)? := STODE COMPLvTE
t -".7T'FFFPY.TCKET IMEI_ 3OX, 11)

%GATiKEEER.AWAITf (MAILT 3TX, C, t-2))
EL S
M A 1L_!3OX .MvG.I NST v ; LOi OST
MAILEOX.VMSG.PATPFNME U- NLL,
MATL TC.S~F STZ~v: NMLL
MI _jB CX .MS(y. S U CCC 0 r7' MAIL 3OX . -7SUCCCODY
!error returned from. io process; F

crnd packet received impro:er number of' data packets!
t := GATEYEE7R.TIPKET ('MAILBOX,
GATEKEPPER. IDVA CF M t ILEOX. C)
GATEYTFrR.ftWBIT 'MAI TT X mo r, (t+2))

Fl
ELSE

MpITI _EOX.MS(!IINST !CY ROST
MAIL BOX MS''.~PTFAm'=E NUIL
MAIL B0X.VSG.*FILr'ESIZE VU=

MiAIL ?OX.MSG.SU,,,C CC!)? "-~RR CODY (DIR SUC_ CODE)

Ifile not fennd; write access to file nor. permitted!
t := GPTErKEYPEF.TICKFT (MAIL BOX, C)
GAT?KFFPrRR.A'1VANPr' (MAIL TOY. r)
"ATEKEFPER.AWAIT (MILX, C, !t+2))

V-ND FM CM)_END)_STORr'_FILF



rm -m-' FN R7AD A!'L ??O'"PURF
EN TRY

MSG READ ACLJ
DIR OTRP RrTOR! (MSG

USER ID
PA THN A MF
NULL !file type!

NULL !access level!
NULL 'lirk!
NULL) !acl entry?

!returns dir succ-code!
IF DIR -SuC -CODE = TR.UE

M0AIL BCR(X.MSG.INST := ACK _HOST
MAIL BOX.MSG.PmTHNAV-F NULL
mSI 'POX .MS",.FT11F SIZ"- TULL

MAI.30X.MSG.SUCC COD? : ACL_?.EAD_ COMPLETE
!acl diata transfered froT, al _buffer:
host acsnowledgement sent!

t: GATFKrErPEF7 .TICKFT YAIL BOX, C)
I ATFKw-FF. 'V ANCE (MhTLPOX. C)
/TPrr.pt 1T (MAIL mOX, . (t 42))

E LSE
MAIIT_ OX.MS'".INST :- VC FOST

MATL~OXM P .1 T'_ P',!: NULL
M ATI 3()X .MSR FITV SIZE := "UL
MAIL BOX.MS'T.SUCC CODE F'OF COD? (DIOR SUCO CODE)
Ifile_ not found.; Fead acceLss to directoryv file

t ~TRKEPE.TIKFT MIT BOX C)

GATHYP~PE-I.AWAIT (MAILBOX, C. (t+2))

L13



MSG Az!DD kCL. -"T-?Y

1111 CNTRLq 1i1RrrTOR' (mSq
US RI

a~UL !c-ess level-

!retulrns drsiCco~ie!

IF DIE _SUcc CD TBUE

-XI f O XmSr, INST 'aC v U ST

vAIL NrJUIAM

'ABOX.MS".JC - O ~ ~ . I2

tAI GA Y G. ' LSZZ 7 V X. -

MAT A'~ (MAILX-" r

(tIL3:( S.

______ 
- _ 71 __



FrCMD HVD _DELvJTF -A%^L _E1JTRY ?ROCEDnPiE

DIR CNTRI PIRPCTORY !%MSG

NJULL !acnpss 1evrel!

ACL F-NTRY)
!returns dir _succ'_code!

IF TIR_ SUrc_rO1v = TRIF

M4IT B-OX.MSG.ITNST := K 1 TiST%4 T- BMS(.A~N4 NUT T
M.AIL_ BOX.MSG.FILBSIZv' "UT TJ

IT --OX.!VSG .St-CC ('ODF := CL_1i 1' D Z T F

ATFFK3vDER .APDVJCF 1MAIL~~7c
GTvK~rFp.ftWAIT (MAILPOX. C. ft4-2Y1

AI_CX.MS.INST := ACO'_HOST
MAIL ', -XMS r!.P ;T HN AME NULLv 61 _ MOX.MS.IP'_S!Z. != MUTT

MA I 30X.mS4.SUCCCOPP : FiROR 'COE PiiSC CPT
!f'ile not f'our!;~ write accescm tn' direc-trry 'nt
-ermpitted!

'T' (FPP.DVANTCKT (PAILBOY. C )

FTTV~~.WT (MAIL "OX. r t~-)
Ell - F rC ?!:D DF1LETE ACL E71 TRY



FTM  ~ CM TN)tOW? POCEDTJET

D± C'C": UP-DP!TE- (MOsl
USFRI'n

lcp...rA npct free 4 n.pnrerv fle!
MST fX.VS' I~ST ACK MIOST

MT 3 OX\ 
M StIL SIZAT :1AF W=.-J

MtT nArP% ~ cr MA U L )
P ~~ 'MATT Cwn !NC -- ;O .C

TOY. . 't9-21



IC D CO SA F A'I LP NjorUrir

tF 'r --.~r U _ -'

nv Z< r'QD- Ir Tr?-lYr''?

m.j . I-. SIZE -w r !n ntrTCbis
rLT~'fl r't 1.70 cuD

it, - -T

- ~t u. . X . n n

,AS-- r (MI FX.C

DCC

CS'7  S 'It TI, N VF 'r -a' -

CASE TC TS T7ZE- V

r: ~w~ r: arn m T -r '%'

T T'. m am

VT
t =TICKET '"!T ly .

PDVNC '?4L W'X C

r 1 ''- C ~ F' D*'I

T11

END 10CMDGEN



J~% wAS rw Ml~ t 3r 7o n

r-- .C-a~ bSyste' VS

IIz, Ju emr
+rr cart .Az- o4 'he a

*1b-

__ _ _____~-oc Joy 1976.rI~,>

-v% Tv--. - minca ti ... =

-N C n~ t-t ' 7A - p-

ow O-r I pa

CRir ase bn -Thory ?rertize

44

-T~~ -7 C-

S 

MR

- r ~ -~*- rib tetCe_'

NG Cling an !on q-y4



S=

- _-

-~ri M. .

~ ~ VII' ~C.7c.1107

N AA



__ ~INITIAL DISTH IJINLS

r No. Copies
1. Defense Technical Information Center 2

Cameron Station
A ~ Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval lostgraduiate Schol1
Monterey, California 930940

3. De pa r tme"t Chairmar. Code 5 2 2
Denartment of' nompDuter Science
Navral Postgraduate Schcnl
Monterey, California 9344

4. tCo..R*Schell1, USAv', Code52Sj 5
Department of Computer Science

__ Naval Postgraduate School
Monterey, California 93940

5. Asst Professor Lyle A. Cox, Code 52C1 3
Department Of ComDUter Science
Naval Post-oraduate School
Monterey, California 9 19 -s0

6. Mr. Joel Trimble, Code 221
Office of Naval Research
80g North O i n cy
Arlington, Virginia 22217

7. CPT A. P. Coleman, USI
Pox 426
U.S. Army War College
Carlisle, Pennsylvania 170.13

'.rt. F.J. Parks, USN 2
NAVSPECWAPRU TWu
N.A.?. Little ".reek
Norfolk, Virginia 243521

9. Lt. C. A. Davis, USN
NARDAC San Francisco
NAS Alameda
Alameda. California 945,71

120


